/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <folly/experimental/coro/BoundedQueue.h>
#include <chrono>
#include <optional>
#include <string>
#include <thread>
#include <folly/CancellationToken.h>
#include <folly/Portability.h>
#include <folly/experimental/coro/BlockingWait.h>
#include <folly/experimental/coro/Collect.h>
#include <folly/experimental/coro/GtestHelpers.h>
#include <folly/experimental/coro/Sleep.h>
#include <folly/portability/GTest.h>
#if FOLLY_HAS_COROUTINES
namespace {
struct SlowMover {
explicit SlowMover(bool slow = false) : slow(slow) {}
SlowMover(SlowMover&& other) noexcept { *this = std::move(other); }
SlowMover& operator=(SlowMover&& other) noexcept {
slow = other.slow;
if (slow) {
/* sleep override */ std::this_thread::sleep_for(
std::chrono::milliseconds(50));
}
return *this;
}
bool slow;
};
} // namespace
CO_TEST(BoundedQueueTest, EnqueueDeque) {
folly::coro::BoundedQueue<std::string, true, true> queue(100);
constexpr auto val = "a string";
std::string val1 = val;
EXPECT_TRUE(queue.empty());
EXPECT_EQ(queue.size(), 0);
co_await queue.enqueue(val1);
EXPECT_FALSE(queue.empty());
co_await queue.enqueue(std::move(val1));
EXPECT_EQ(queue.size(), 2);
for (int i = 0; i < 2; ++i) {
auto val2 = co_await queue.dequeue();
EXPECT_EQ(val2, val);
}
EXPECT_TRUE(queue.empty());
}
CO_TEST(BoundedQueueTest, DequeueWhileBlocking) {
folly::coro::BoundedQueue<int> queue(5);
folly::ManualExecutor ex;
auto fut = queue.dequeue().scheduleOn(&ex).start();
ex.drain();
EXPECT_FALSE(fut.isReady());
co_await queue.enqueue(0);
ex.drain();
EXPECT_TRUE(fut.isReady());
EXPECT_EQ(std::move(fut).get(), 0);
}
CO_TEST(BoundedQueueTest, EnqueueDequeMultiProducer) {
folly::coro::BoundedQueue<int, false, true> queue(5);
std::atomic<int> i = 0;
std::vector<std::thread> enqueuers;
for (int n = 0; n < 5; ++n) {
enqueuers.emplace_back([&] {
while (true) {
int next = i++;
if (next >= 100) {
break;
}
folly::coro::blockingWait(
[&, next]() mutable -> folly::coro::Task<void> {
co_await queue.enqueue(std::move(next));
}());
}
});
}
for (int n = 0; n < 100; ++n) {
co_await queue.dequeue();
}
EXPECT_TRUE(queue.empty());
for (int n = 0; n < 5; ++n) {
enqueuers[n].join();
}
}
CO_TEST(BoundedQueueTest, EnqueueDequeMultiConsumer) {
folly::coro::BoundedQueue<int, true, false> queue(10);
std::atomic<int> seen = 0;
std::vector<std::thread> dequeuers;
for (int n = 0; n < 5; ++n) {
dequeuers.emplace_back([&] {
folly::coro::blockingWait([&]() -> folly::coro::Task<void> {
while (++seen <= 100) {
co_await queue.dequeue();
}
}());
});
}
for (int n = 0; n < 100; ++n) {
co_await queue.enqueue(std::move(n));
}
for (int n = 0; n < 5; ++n) {
dequeuers[n].join();
}
EXPECT_TRUE(queue.empty());
}
CO_TEST(BoundedQueueTest, EnqueueDequeMPMCWithSingleSlot) {
folly::coro::BoundedQueue<int, false, false> queue(1);
std::atomic<int> seen = 0, i = 0;
std::vector<std::thread> enqueuers;
for (int n = 0; n < 5; ++n) {
enqueuers.emplace_back([&] {
folly::coro::blockingWait([&]() mutable -> folly::coro::Task<void> {
while (true) {
int next = i++;
if (next >= 100) {
break;
}
co_await queue.enqueue(std::move(next));
}
}());
});
}
std::vector<std::thread> dequeuers;
for (int n = 0; n < 5; ++n) {
dequeuers.emplace_back([&] {
folly::coro::blockingWait([&]() -> folly::coro::Task<void> {
while (++seen <= 100) {
co_await queue.dequeue();
}
}());
});
}
for (int n = 0; n < 5; ++n) {
enqueuers[n].join();
}
for (int n = 0; n < 5; ++n) {
dequeuers[n].join();
}
EXPECT_TRUE(queue.empty());
co_return;
}
CO_TEST(
BoundedQueueTest, CancelledDequeueCompletesNormallyIfAnItemIsAvailable) {
folly::coro::BoundedQueue<int> queue(10);
folly::CancellationSource cancelSource;
cancelSource.requestCancellation();
co_await queue.enqueue(123);
int result = co_await folly::coro::co_withCancellation(
cancelSource.getToken(), queue.dequeue());
EXPECT_EQ(123, result);
}
CO_TEST(BoundedQueueTest, EnqueueWait) {
folly::coro::BoundedQueue<int> queue(2);
co_await folly::coro::collectAll(
[&]() -> folly::coro::Task<void> {
for (int i = 0; i < 100; i++) {
auto val = i;
co_await queue.enqueue(std::move(val));
}
}(),
[&]() -> folly::coro::Task<void> {
for (int i = 0; i < 100; i++) {
int val = co_await queue.dequeue();
EXPECT_EQ(val, i);
}
}());
}
CO_TEST(BoundedQueueTest, DequeueWait) {
folly::coro::BoundedQueue<int> queue(2);
co_await folly::coro::collectAll(
[&]() -> folly::coro::Task<void> {
for (int i = 0; i < 100; i++) {
auto val = i;
co_await queue.enqueue(std::move(val));
}
}(),
[&]() -> folly::coro::Task<void> {
for (int i = 0; i < 100; i++) {
int val = co_await queue.dequeue();
EXPECT_EQ(val, i);
}
}());
}
CO_TEST(BoundedQueueTest, TryEnqueue) {
folly::coro::BoundedQueue<int> queue(2);
EXPECT_TRUE(queue.try_enqueue(1));
EXPECT_TRUE(queue.try_enqueue(1));
EXPECT_FALSE(queue.try_enqueue(1));
co_await queue.dequeue();
EXPECT_TRUE(queue.try_enqueue(1));
}
CO_TEST(BoundedQueueTest, TryDequeue) {
folly::coro::BoundedQueue<int> queue(2);
EXPECT_FALSE(queue.try_dequeue().has_value());
co_await queue.enqueue(1);
EXPECT_TRUE(queue.try_dequeue().has_value());
}
TEST(BoundedQueueTest, UnorderedEnqueueCompletion) {
// Use optional to verify we're not accidentally dequeueing
// default-constructed values.
folly::coro::BoundedQueue<std::optional<SlowMover>> queue(1024);
std::atomic<int> turn = 0;
std::thread consumer([&] {
++turn;
for (size_t i = 0; i < 2; ++i) {
ASSERT_TRUE(folly::coro::blockingWait(queue.dequeue()).has_value());
}
});
// producer2 will frequently initiate the enqueue after producer1 (thus
// acquiring a larger ticket) but complete the move after it. The consumer
// thus needs to block until the head-of-line item is available.
std::thread producer1([&] {
++turn;
while (turn < 3) {
}
++turn;
ASSERT_TRUE(queue.try_enqueue(SlowMover(true)));
});
std::thread producer2([&] {
++turn;
while (turn < 4) {
}
/* sleep override */ std::this_thread::sleep_for(
std::chrono::milliseconds(1));
ASSERT_TRUE(queue.try_enqueue(SlowMover(false)));
});
producer1.join();
producer2.join();
consumer.join();
}
TEST(BoundedQueueTest, UnorderedDequeueCompletion) {
// Use optional to verify we're not accidentally dequeueing
// default-constructed values.
folly::coro::BoundedQueue<std::optional<SlowMover>> queue(2);
ASSERT_TRUE(queue.try_enqueue(SlowMover(true)));
ASSERT_TRUE(queue.try_enqueue(SlowMover(false)));
std::vector<std::thread> consumers;
for (size_t i = 0; i < 3; ++i) {
consumers.emplace_back([&]() {
ASSERT_TRUE(folly::coro::blockingWait(queue.dequeue()).has_value());
});
}
// The producer will get the ticket for the slow moving slot which will still
// be in the process of dequeuing, so the producer needs to block until it
// finishes and the slot becomes available.
std::thread producer(
[&] { folly::coro::blockingWait(queue.enqueue(SlowMover(false))); });
producer.join();
for (auto& consumer : consumers) {
consumer.join();
}
}
#endif