/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <folly/ConcurrentSkipList.h>
#include <atomic>
#include <memory>
#include <set>
#include <system_error>
#include <thread>
#include <vector>
#include <glog/logging.h>
#include <folly/Memory.h>
#include <folly/String.h>
#include <folly/container/Foreach.h>
#include <folly/memory/Arena.h>
#include <folly/portability/GFlags.h>
#include <folly/portability/GTest.h>
DEFINE_int32(num_threads, 12, "num concurrent threads to test");
namespace {
template <typename ParentAlloc>
struct ParanoidArenaAlloc {
explicit ParanoidArenaAlloc(ParentAlloc& arena) : arena_(arena) {}
ParanoidArenaAlloc(ParanoidArenaAlloc const&) = delete;
ParanoidArenaAlloc(ParanoidArenaAlloc&&) = delete;
ParanoidArenaAlloc& operator=(ParanoidArenaAlloc const&) = delete;
ParanoidArenaAlloc& operator=(ParanoidArenaAlloc&&) = delete;
void* allocate(size_t size) {
void* result = arena_.get().allocate(size);
allocated_.insert(result);
return result;
}
void deallocate(char* ptr, size_t n) {
EXPECT_EQ(1, allocated_.erase(ptr));
arena_.get().deallocate(ptr, n);
}
bool isEmpty() const { return allocated_.empty(); }
std::reference_wrapper<ParentAlloc> arena_;
std::set<void*> allocated_;
};
} // namespace
namespace folly {
template <typename ParentAlloc>
struct AllocatorHasTrivialDeallocate<ParanoidArenaAlloc<ParentAlloc>>
: AllocatorHasTrivialDeallocate<ParentAlloc> {};
} // namespace folly
namespace {
using namespace folly;
using std::vector;
typedef int ValueType;
typedef detail::SkipListNode<ValueType> SkipListNodeType;
typedef ConcurrentSkipList<ValueType> SkipListType;
typedef SkipListType::Accessor SkipListAccessor;
typedef std::set<ValueType> SetType;
static const int kHeadHeight = 2;
static const int kMaxValue = 5000;
static void randomAdding(
int size,
SkipListAccessor skipList,
SetType* verifier,
int maxValue = kMaxValue) {
for (int i = 0; i < size; ++i) {
int32_t r = rand() % maxValue;
verifier->insert(r);
skipList.add(r);
}
}
static void randomRemoval(
int size,
SkipListAccessor skipList,
SetType* verifier,
int maxValue = kMaxValue) {
for (int i = 0; i < size; ++i) {
int32_t r = rand() % maxValue;
verifier->insert(r);
skipList.remove(r);
}
}
static void sumAllValues(SkipListAccessor skipList, int64_t* sum) {
*sum = 0;
FOR_EACH (it, skipList) {
*sum += *it;
}
VLOG(20) << "sum = " << sum;
}
static void concurrentSkip(
const vector<ValueType>* values, SkipListAccessor skipList) {
int64_t sum = 0;
SkipListAccessor::Skipper skipper(skipList);
FOR_EACH (it, *values) {
if (skipper.to(*it)) {
sum += *it;
}
}
VLOG(20) << "sum = " << sum;
}
bool verifyEqual(SkipListAccessor skipList, const SetType& verifier) {
EXPECT_EQ(verifier.size(), skipList.size());
FOR_EACH (it, verifier) {
CHECK(skipList.contains(*it)) << *it;
SkipListType::const_iterator iter = skipList.find(*it);
CHECK(iter != skipList.end());
EXPECT_EQ(*iter, *it);
}
EXPECT_TRUE(std::equal(verifier.begin(), verifier.end(), skipList.begin()));
return true;
}
TEST(ConcurrentSkipList, SequentialAccess) {
{
LOG(INFO) << "nodetype size=" << sizeof(SkipListNodeType);
auto skipList(SkipListType::create(kHeadHeight));
EXPECT_TRUE(skipList.first() == nullptr);
EXPECT_TRUE(skipList.last() == nullptr);
skipList.add(3);
EXPECT_TRUE(skipList.contains(3));
EXPECT_FALSE(skipList.contains(2));
EXPECT_EQ(3, *skipList.first());
EXPECT_EQ(3, *skipList.last());
EXPECT_EQ(3, *skipList.find(3));
EXPECT_FALSE(skipList.find(3) == skipList.end());
EXPECT_TRUE(skipList.find(2) == skipList.end());
{
SkipListAccessor::Skipper skipper(skipList);
skipper.to(3);
CHECK_EQ(3, *skipper);
}
skipList.add(2);
EXPECT_EQ(2, *skipList.first());
EXPECT_EQ(3, *skipList.last());
skipList.add(5);
EXPECT_EQ(5, *skipList.last());
skipList.add(3);
EXPECT_EQ(5, *skipList.last());
auto ret = skipList.insert(9);
EXPECT_EQ(9, *ret.first);
EXPECT_TRUE(ret.second);
ret = skipList.insert(5);
EXPECT_EQ(5, *ret.first);
EXPECT_FALSE(ret.second);
EXPECT_EQ(2, *skipList.first());
EXPECT_EQ(9, *skipList.last());
EXPECT_TRUE(skipList.pop_back());
EXPECT_EQ(5, *skipList.last());
EXPECT_TRUE(skipList.pop_back());
EXPECT_EQ(3, *skipList.last());
skipList.add(9);
skipList.add(5);
CHECK(skipList.contains(2));
CHECK(skipList.contains(3));
CHECK(skipList.contains(5));
CHECK(skipList.contains(9));
CHECK(!skipList.contains(4));
// lower_bound
auto it = skipList.lower_bound(5);
EXPECT_EQ(5, *it);
it = skipList.lower_bound(4);
EXPECT_EQ(5, *it);
it = skipList.lower_bound(9);
EXPECT_EQ(9, *it);
it = skipList.lower_bound(12);
EXPECT_FALSE(it.good());
it = skipList.begin();
EXPECT_EQ(2, *it);
// skipper test
SkipListAccessor::Skipper skipper(skipList);
skipper.to(3);
EXPECT_EQ(3, skipper.data());
skipper.to(5);
EXPECT_EQ(5, skipper.data());
CHECK(!skipper.to(7));
skipList.remove(5);
skipList.remove(3);
CHECK(skipper.to(9));
EXPECT_EQ(9, skipper.data());
CHECK(!skipList.contains(3));
skipList.add(3);
CHECK(skipList.contains(3));
int pos = 0;
for (auto entry : skipList) {
LOG(INFO) << "pos= " << pos++ << " value= " << entry;
}
}
{
auto skipList(SkipListType::create(kHeadHeight));
SetType verifier;
randomAdding(10000, skipList, &verifier);
verifyEqual(skipList, verifier);
// test skipper
SkipListAccessor::Skipper skipper(skipList);
int num_skips = 1000;
for (int i = 0; i < num_skips; ++i) {
int n = i * kMaxValue / num_skips;
bool found = skipper.to(n);
EXPECT_EQ(found, (verifier.find(n) != verifier.end()));
}
}
}
static std::string makeRandomeString(int len) {
std::string s;
for (int j = 0; j < len; j++) {
s.push_back((rand() % 26) + 'A');
}
return s;
}
TEST(ConcurrentSkipList, TestStringType) {
typedef folly::ConcurrentSkipList<std::string> SkipListT;
std::shared_ptr<SkipListT> skip = SkipListT::createInstance();
SkipListT::Accessor accessor(skip);
{
for (int i = 0; i < 100000; i++) {
std::string s = makeRandomeString(7);
accessor.insert(s);
}
}
EXPECT_TRUE(std::is_sorted(accessor.begin(), accessor.end()));
}
struct UniquePtrComp {
bool operator()(
const std::unique_ptr<int>& x, const std::unique_ptr<int>& y) const {
if (!x) {
return false;
}
if (!y) {
return true;
}
return *x < *y;
}
};
TEST(ConcurrentSkipList, TestMovableData) {
typedef folly::ConcurrentSkipList<std::unique_ptr<int>, UniquePtrComp>
SkipListT;
auto sl = SkipListT::createInstance();
SkipListT::Accessor accessor(sl);
static const int N = 10;
for (int i = 0; i < N; ++i) {
accessor.insert(std::make_unique<int>(i));
}
for (int i = 0; i < N; ++i) {
EXPECT_TRUE(
accessor.find(std::unique_ptr<int>(new int(i))) != accessor.end());
}
EXPECT_TRUE(
accessor.find(std::unique_ptr<int>(new int(N))) == accessor.end());
}
TEST(ConcurrentSkipList, ConcurrentAdd) {
int numThreads = 100;
auto skipList(SkipListType::create(kHeadHeight));
vector<std::thread> threads;
vector<SetType> verifiers(numThreads);
try {
for (int i = 0; i < numThreads; ++i) {
threads.push_back(std::thread(
&randomAdding, 1000000, skipList, &verifiers[i], kMaxValue));
}
} catch (const std::system_error& e) {
LOG(WARNING) << "Caught " << exceptionStr(e) << ": could only create "
<< threads.size() << " threads out of " << numThreads;
}
for (size_t i = 0; i < threads.size(); ++i) {
threads[i].join();
}
SetType all;
FOR_EACH (s, verifiers) {
all.insert(s->begin(), s->end());
}
verifyEqual(skipList, all);
}
void testConcurrentRemoval(int numThreads, int maxValue) {
auto skipList = SkipListType::create(kHeadHeight);
for (int i = 0; i < maxValue; ++i) {
skipList.add(i);
}
vector<std::thread> threads;
vector<SetType> verifiers(numThreads);
try {
for (int i = 0; i < numThreads; ++i) {
threads.push_back(
std::thread(&randomRemoval, 100, skipList, &verifiers[i], maxValue));
}
} catch (const std::system_error& e) {
LOG(WARNING) << "Caught " << exceptionStr(e) << ": could only create "
<< threads.size() << " threads out of " << numThreads;
}
FOR_EACH (t, threads) {
(*t).join();
}
SetType all;
FOR_EACH (s, verifiers) {
all.insert(s->begin(), s->end());
}
CHECK_EQ(maxValue, all.size() + skipList.size());
for (int i = 0; i < maxValue; ++i) {
if (all.find(i) != all.end()) {
CHECK(!skipList.contains(i)) << i;
} else {
CHECK(skipList.contains(i)) << i;
}
}
}
TEST(ConcurrentSkipList, ConcurrentRemove) {
for (int numThreads = 10; numThreads < 1000; numThreads += 100) {
testConcurrentRemoval(numThreads, 100 * numThreads);
}
}
static void testConcurrentAccess(
int numInsertions, int numDeletions, int maxValue) {
auto skipList = SkipListType::create(kHeadHeight);
vector<SetType> verifiers(FLAGS_num_threads);
vector<int64_t> sums(FLAGS_num_threads);
vector<vector<ValueType>> skipValues(FLAGS_num_threads);
for (int i = 0; i < FLAGS_num_threads; ++i) {
for (int j = 0; j < numInsertions; ++j) {
skipValues[i].push_back(rand() % (maxValue + 1));
}
std::sort(skipValues[i].begin(), skipValues[i].end());
}
vector<std::thread> threads;
for (int i = 0; i < FLAGS_num_threads; ++i) {
switch (i % 8) {
case 0:
case 1:
threads.push_back(std::thread(
randomAdding, numInsertions, skipList, &verifiers[i], maxValue));
break;
case 2:
threads.push_back(std::thread(
randomRemoval, numDeletions, skipList, &verifiers[i], maxValue));
break;
case 3:
threads.push_back(
std::thread(concurrentSkip, &skipValues[i], skipList));
break;
default:
threads.push_back(std::thread(sumAllValues, skipList, &sums[i]));
break;
}
}
FOR_EACH (t, threads) {
(*t).join();
}
// just run through it, no need to verify the correctness.
}
TEST(ConcurrentSkipList, ConcurrentAccess) {
testConcurrentAccess(10000, 100, kMaxValue);
testConcurrentAccess(100000, 10000, kMaxValue * 10);
testConcurrentAccess(1000000, 100000, kMaxValue);
}
struct NonTrivialValue {
static std::atomic<int> InstanceCounter;
static const int kBadPayLoad;
NonTrivialValue() : payload_(kBadPayLoad) { ++InstanceCounter; }
explicit NonTrivialValue(int payload) : payload_(payload) {
++InstanceCounter;
}
NonTrivialValue(const NonTrivialValue& rhs) : payload_(rhs.payload_) {
++InstanceCounter;
}
NonTrivialValue& operator=(const NonTrivialValue& rhs) {
payload_ = rhs.payload_;
return *this;
}
~NonTrivialValue() { --InstanceCounter; }
bool operator<(const NonTrivialValue& rhs) const {
EXPECT_NE(kBadPayLoad, payload_);
EXPECT_NE(kBadPayLoad, rhs.payload_);
return payload_ < rhs.payload_;
}
private:
int payload_;
};
std::atomic<int> NonTrivialValue::InstanceCounter(0);
const int NonTrivialValue::kBadPayLoad = 0xDEADBEEF;
template <typename SkipListPtrType>
void TestNonTrivialDeallocation(SkipListPtrType& list) {
{
auto accessor = typename SkipListPtrType::element_type::Accessor(list);
static const size_t N = 10000;
for (size_t i = 0; i < N; ++i) {
accessor.add(NonTrivialValue(i));
}
list.reset();
}
EXPECT_EQ(0, NonTrivialValue::InstanceCounter);
}
template <typename ParentAlloc>
void NonTrivialDeallocationWithParanoid(ParentAlloc& parentAlloc) {
using ParanoidAlloc = ParanoidArenaAlloc<ParentAlloc>;
using Alloc = CxxAllocatorAdaptor<char, ParanoidAlloc>;
using ParanoidSkipListType =
ConcurrentSkipList<NonTrivialValue, std::less<NonTrivialValue>, Alloc>;
ParanoidAlloc paranoidAlloc(parentAlloc);
Alloc alloc(paranoidAlloc);
auto list = ParanoidSkipListType::createInstance(10, alloc);
TestNonTrivialDeallocation(list);
EXPECT_TRUE(paranoidAlloc.isEmpty());
}
TEST(ConcurrentSkipList, NonTrivialDeallocationWithParanoidSysAlloc) {
SysAllocator<char> alloc;
NonTrivialDeallocationWithParanoid(alloc);
}
TEST(ConcurrentSkipList, NonTrivialDeallocationWithParanoidSysArena) {
SysArena arena;
SysArenaAllocator<char> alloc(arena);
NonTrivialDeallocationWithParanoid(alloc);
}
TEST(ConcurrentSkipList, NonTrivialDeallocationWithSysArena) {
using SysArenaSkipListType = ConcurrentSkipList<
NonTrivialValue,
std::less<NonTrivialValue>,
SysArenaAllocator<char>>;
SysArena arena;
SysArenaAllocator<char> alloc(arena);
auto list = SysArenaSkipListType::createInstance(10, alloc);
TestNonTrivialDeallocation(list);
}
} // namespace
int main(int argc, char* argv[]) {
testing::InitGoogleTest(&argc, argv);
google::InitGoogleLogging(argv[0]);
gflags::ParseCommandLineFlags(&argc, &argv, true);
return RUN_ALL_TESTS();
}