/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <folly/Range.h>
#include <array>
#include <deque>
#include <iterator>
#include <limits>
#include <random>
#include <string>
#include <type_traits>
#include <vector>
#include <boost/algorithm/string/trim.hpp>
#include <boost/range/concepts.hpp>
#include <folly/CppAttributes.h>
#include <folly/Memory.h>
#include <folly/portability/GMock.h>
#include <folly/portability/GTest.h>
#include <folly/portability/SysMman.h>
#include <folly/portability/Unistd.h>
#if __has_include(<range/v3/range/concepts.hpp>)
#include <range/v3/range/concepts.hpp>
// Check conformance with the C++20 range concepts as specified
// by the range-v3 library.
CPP_assert(ranges::range<folly::StringPiece>);
CPP_assert(ranges::view_<folly::StringPiece>);
#endif
using namespace folly;
using namespace std;
static_assert(folly::detail::range_is_char_type_v_<char*>, "");
static_assert(folly::detail::range_is_byte_type_v_<unsigned char*>, "");
static_assert(std::is_same_v<char, typename Range<char*>::value_type>);
BOOST_CONCEPT_ASSERT((boost::RandomAccessRangeConcept<StringPiece>));
#define EXPECT_CMP_(op, a_, b_, eq, ne, lt, le, gt, ge) \
::std::invoke( \
[](auto const& a, auto const& b) { \
EXPECT_##op(a, b); \
EXPECT_THAT(a, ::testing::eq(::testing::Eq(b))); \
EXPECT_THAT(a, ::testing::ne(::testing::Ne(b))); \
EXPECT_THAT(a, ::testing::lt(::testing::Lt(b))); \
EXPECT_THAT(a, ::testing::le(::testing::Le(b))); \
EXPECT_THAT(a, ::testing::gt(::testing::Gt(b))); \
EXPECT_THAT(a, ::testing::ge(::testing::Ge(b))); \
}, \
(a_), \
(b_));
#define EXPECT_CMP_EQ(a_, b_) \
EXPECT_CMP_(EQ, a_, b_, AllArgs, Not, Not, AllArgs, Not, AllArgs)
#define EXPECT_CMP_LT(a_, b_) \
EXPECT_CMP_(LT, a_, b_, Not, AllArgs, AllArgs, AllArgs, Not, Not)
#define EXPECT_CMP_GT(a_, b_) \
EXPECT_CMP_(GT, a_, b_, Not, AllArgs, Not, Not, AllArgs, AllArgs)
TEST(StringPiece, All) {
const char* foo = "foo";
const char* foo2 = "foo";
string fooStr(foo);
string foo2Str(foo2);
// we expect the compiler to optimize things so that there's only one copy
// of the string literal "foo", even though we've got it in multiple places
EXPECT_EQ(foo, foo2); // remember, this uses ==, not strcmp, so it's a ptr
// comparison rather than lexical
// the string object creates copies though, so the c_str of these should be
// distinct
EXPECT_NE(fooStr.c_str(), foo2Str.c_str());
// test the basic StringPiece functionality
StringPiece s(foo);
EXPECT_EQ(s.size(), 3);
EXPECT_EQ(s.start(), foo); // ptr comparison
EXPECT_NE(s.start(), fooStr.c_str()); // ptr comparison
EXPECT_NE(s.start(), foo2Str.c_str()); // ptr comparison
EXPECT_EQ(s.toString(), foo); // lexical comparison
EXPECT_EQ(s.toString(), fooStr.c_str()); // lexical comparison
EXPECT_EQ(s.toString(), foo2Str.c_str()); // lexical comparison
EXPECT_EQ(s, foo); // lexical comparison
EXPECT_EQ(s, fooStr); // lexical comparison
EXPECT_EQ(s, foo2Str); // lexical comparison
EXPECT_EQ(foo, s);
// check using StringPiece to reference substrings
const char* foobarbaz = "foobarbaz";
// the full "foobarbaz"
s.reset(foobarbaz, strlen(foobarbaz));
EXPECT_EQ(s.size(), 9);
EXPECT_EQ(s.start(), foobarbaz);
EXPECT_EQ(s, "foobarbaz");
// only the 'foo'
s.assign(foobarbaz, foobarbaz + 3);
EXPECT_EQ(s.size(), 3);
EXPECT_EQ(s.start(), foobarbaz);
EXPECT_EQ(s, "foo");
// find
s.reset(foobarbaz, strlen(foobarbaz));
EXPECT_EQ(s.find("bar"), 3);
EXPECT_EQ(s.find("ba", 3), 3);
EXPECT_EQ(s.find("ba", 4), 6);
EXPECT_EQ(s.find("notfound"), StringPiece::npos);
EXPECT_EQ(s.find("notfound", 1), StringPiece::npos);
EXPECT_EQ(s.find("bar", 4), StringPiece::npos); // starting position too far
// starting pos that is obviously past the end -- This works for std::string
EXPECT_EQ(s.toString().find("notfound", 55), StringPiece::npos);
EXPECT_EQ(s.find("z", s.size()), StringPiece::npos);
EXPECT_EQ(s.find("z", 55), StringPiece::npos);
// empty needle
EXPECT_EQ(s.find(""), std::string().find(""));
EXPECT_EQ(s.find(""), 0);
// single char finds
EXPECT_EQ(s.find('b'), 3);
EXPECT_EQ(s.find('b', 3), 3);
EXPECT_EQ(s.find('b', 4), 6);
EXPECT_EQ(s.find('o', 2), 2);
EXPECT_EQ(s.find('y'), StringPiece::npos);
EXPECT_EQ(s.find('y', 1), StringPiece::npos);
EXPECT_EQ(s.find('o', 4), StringPiece::npos); // starting position too far
EXPECT_TRUE(s.contains('z'));
// starting pos that is obviously past the end -- This works for std::string
EXPECT_EQ(s.toString().find('y', 55), StringPiece::npos);
EXPECT_EQ(s.find('z', s.size()), StringPiece::npos);
EXPECT_EQ(s.find('z', 55), StringPiece::npos);
// null char
EXPECT_EQ(s.find('\0'), std::string().find('\0'));
EXPECT_EQ(s.find('\0'), StringPiece::npos);
EXPECT_FALSE(s.contains('\0'));
// single char rfinds
EXPECT_EQ(s.rfind('b'), 6);
EXPECT_EQ(s.rfind('y'), StringPiece::npos);
EXPECT_EQ(s.str().rfind('y'), StringPiece::npos);
EXPECT_EQ(ByteRange(s).rfind('b'), 6);
EXPECT_EQ(ByteRange(s).rfind('y'), StringPiece::npos);
// null char
EXPECT_EQ(s.rfind('\0'), s.str().rfind('\0'));
EXPECT_EQ(s.rfind('\0'), StringPiece::npos);
// find_first_of
s.reset(foobarbaz, strlen(foobarbaz));
EXPECT_EQ(s.find_first_of("bar"), 3);
EXPECT_EQ(s.find_first_of("ba", 3), 3);
EXPECT_EQ(s.find_first_of("ba", 4), 4);
EXPECT_TRUE(s.contains("bar"));
EXPECT_EQ(s.find_first_of("xyxy"), StringPiece::npos);
EXPECT_EQ(s.find_first_of("xyxy", 1), StringPiece::npos);
EXPECT_FALSE(s.contains("xyxy"));
// starting position too far
EXPECT_EQ(s.find_first_of("foo", 4), StringPiece::npos);
// starting pos that is obviously past the end -- This works for std::string
EXPECT_EQ(s.toString().find_first_of("xyxy", 55), StringPiece::npos);
EXPECT_EQ(s.find_first_of("z", s.size()), StringPiece::npos);
EXPECT_EQ(s.find_first_of("z", 55), StringPiece::npos);
// empty needle. Note that this returns npos, while find() returns 0!
EXPECT_EQ(s.find_first_of(""), std::string().find_first_of(""));
EXPECT_EQ(s.find_first_of(""), StringPiece::npos);
// single char find_first_ofs
EXPECT_EQ(s.find_first_of('b'), 3);
EXPECT_EQ(s.find_first_of('b', 3), 3);
EXPECT_EQ(s.find_first_of('b', 4), 6);
EXPECT_EQ(s.find_first_of('o', 2), 2);
EXPECT_EQ(s.find_first_of('y'), StringPiece::npos);
EXPECT_EQ(s.find_first_of('y', 1), StringPiece::npos);
// starting position too far
EXPECT_EQ(s.find_first_of('o', 4), StringPiece::npos);
// starting pos that is obviously past the end -- This works for std::string
EXPECT_EQ(s.toString().find_first_of('y', 55), StringPiece::npos);
EXPECT_EQ(s.find_first_of('z', s.size()), StringPiece::npos);
EXPECT_EQ(s.find_first_of('z', 55), StringPiece::npos);
// null char
EXPECT_EQ(s.find_first_of('\0'), std::string().find_first_of('\0'));
EXPECT_EQ(s.find_first_of('\0'), StringPiece::npos);
// just "barbaz"
s.reset(foobarbaz + 3, strlen(foobarbaz + 3));
EXPECT_EQ(s.size(), 6);
EXPECT_EQ(s.start(), foobarbaz + 3);
EXPECT_EQ(s, "barbaz");
// just "bar"
s.reset(foobarbaz + 3, 3);
EXPECT_EQ(s.size(), 3);
EXPECT_EQ(s, "bar");
// clear
s.clear();
EXPECT_EQ(s.toString(), "");
// test an empty StringPiece
StringPiece s2;
EXPECT_EQ(s2.size(), 0);
// Test comparison operators
foo = "";
EXPECT_LE(s, foo);
EXPECT_LE(foo, s);
EXPECT_GE(s, foo);
EXPECT_GE(foo, s);
EXPECT_EQ(s, foo);
EXPECT_EQ(foo, s);
foo = "abc";
EXPECT_LE(s, foo);
EXPECT_LT(s, foo);
EXPECT_GE(foo, s);
EXPECT_GT(foo, s);
EXPECT_NE(s, foo);
EXPECT_LE(s, s);
EXPECT_LE(s, s);
EXPECT_GE(s, s);
EXPECT_GE(s, s);
EXPECT_EQ(s, s);
EXPECT_EQ(s, s);
s = "abc";
s2 = "abc";
EXPECT_LE(s, s2);
EXPECT_LE(s2, s);
EXPECT_GE(s, s2);
EXPECT_GE(s2, s);
EXPECT_EQ(s, s2);
EXPECT_EQ(s2, s);
}
#if !defined(__GLIBCXX__) || _GLIBCXX_USE_CXX11_ABI
TEST(StringPiece, CustomAllocator) {
using Alloc = AlignedSysAllocator<char>;
Alloc const alloc{32};
char const* const text = "foo bar baz";
std::basic_string<char, std::char_traits<char>, Alloc> str{text, alloc};
EXPECT_EQ("foo", StringPiece(str).subpiece(0, 3));
EXPECT_EQ("bar", StringPiece(str, 4).subpiece(0, 3));
EXPECT_EQ("baz", StringPiece(str, 8, 3));
StringPiece piece;
piece.reset(str);
EXPECT_EQ("foo", piece.subpiece(0, 3));
}
#endif
template <class T>
void expectLT(const T& a, const T& b) {
EXPECT_TRUE(a < b);
EXPECT_TRUE(a <= b);
EXPECT_FALSE(a == b);
EXPECT_FALSE(a >= b);
EXPECT_FALSE(a > b);
EXPECT_FALSE(b < a);
EXPECT_FALSE(b <= a);
EXPECT_TRUE(b >= a);
EXPECT_TRUE(b > a);
}
template <class T>
void expectEQ(const T& a, const T& b) {
EXPECT_FALSE(a < b);
EXPECT_TRUE(a <= b);
EXPECT_TRUE(a == b);
EXPECT_TRUE(a >= b);
EXPECT_FALSE(a > b);
}
TEST(StringPiece, EightBitComparisons) {
char values[] = {'\x00', '\x20', '\x40', '\x7f', '\x80', '\xc0', '\xff'};
constexpr size_t count = sizeof(values) / sizeof(values[0]);
for (size_t i = 0; i < count; ++i) {
std::string a(1, values[i]);
// Defeat copy-on-write
std::string aCopy(a.data(), a.size());
expectEQ(a, aCopy);
expectEQ(StringPiece(a), StringPiece(aCopy));
for (size_t j = i + 1; j < count; ++j) {
std::string b(1, values[j]);
expectLT(a, b);
expectLT(StringPiece(a), StringPiece(b));
}
}
}
TEST(StringPiece, ToByteRange) {
StringPiece a("hello");
ByteRange b(a);
EXPECT_EQ(
static_cast<const void*>(a.begin()), static_cast<const void*>(b.begin()));
EXPECT_EQ(
static_cast<const void*>(a.end()), static_cast<const void*>(b.end()));
// and convert back again
StringPiece c(b);
EXPECT_EQ(a.begin(), c.begin());
EXPECT_EQ(a.end(), c.end());
}
TEST(ByteRange, FromString) {
std::string s("hello");
ByteRange b(s);
EXPECT_EQ(
static_cast<const void*>(s.data()), static_cast<const void*>(b.begin()));
EXPECT_EQ(s.size(), b.size());
std::string_view sv(s);
ByteRange b2(sv);
EXPECT_EQ(
static_cast<const void*>(s.data()), static_cast<const void*>(b2.begin()));
EXPECT_EQ(s.size(), b2.size());
}
TEST(StringPiece, InvalidRange) {
StringPiece a("hello");
EXPECT_EQ(a, a.subpiece(0, 10));
EXPECT_EQ(StringPiece("ello"), a.subpiece(1));
EXPECT_EQ(StringPiece("ello"), a.subpiece(1, std::string::npos));
EXPECT_EQ(StringPiece("ell"), a.subpiece(1, 3));
EXPECT_THROW(a.subpiece(6, 7), std::out_of_range);
EXPECT_THROW(a.subpiece(6), std::out_of_range);
std::string b("hello");
EXPECT_EQ(a, StringPiece(b, 0, 10));
EXPECT_EQ("ello", a.subpiece(1));
EXPECT_EQ("ello", a.subpiece(1, std::string::npos));
EXPECT_EQ("ell", a.subpiece(1, 3));
EXPECT_THROW(a.subpiece(6, 7), std::out_of_range);
EXPECT_THROW(a.subpiece(6), std::out_of_range);
}
TEST(StringPiece, Constexpr) {
constexpr const char* helloArray = "hello";
constexpr StringPiece hello1("hello");
EXPECT_EQ("hello", hello1);
static_assert(hello1.size() == 5, "hello size should be 5 at compile time");
constexpr StringPiece hello2(helloArray);
EXPECT_EQ("hello", hello2);
static_assert(hello2.size() == 5, "hello size should be 5 at compile time");
}
TEST(StringPiece, Prefix) {
StringPiece a("hello");
EXPECT_TRUE(a.starts_with(""));
EXPECT_TRUE(a.starts_with("h"));
EXPECT_TRUE(a.starts_with('h'));
EXPECT_TRUE(a.starts_with("hello"));
EXPECT_FALSE(a.starts_with("hellox"));
EXPECT_FALSE(a.starts_with('x'));
EXPECT_FALSE(a.starts_with("x"));
EXPECT_TRUE(a.startsWith("", folly::AsciiCaseInsensitive()));
EXPECT_TRUE(a.startsWith("hello", folly::AsciiCaseInsensitive()));
EXPECT_TRUE(a.startsWith("hellO", folly::AsciiCaseInsensitive()));
EXPECT_TRUE(a.startsWith("HELL", folly::AsciiCaseInsensitive()));
EXPECT_TRUE(a.startsWith("H", folly::AsciiCaseInsensitive()));
EXPECT_FALSE(a.startsWith("HELLOX", folly::AsciiCaseInsensitive()));
EXPECT_FALSE(a.startsWith("x", folly::AsciiCaseInsensitive()));
EXPECT_FALSE(a.startsWith("X", folly::AsciiCaseInsensitive()));
{
auto b = a;
EXPECT_TRUE(b.removePrefix(""));
EXPECT_EQ("hello", b);
}
{
auto b = a;
EXPECT_TRUE(b.removePrefix("h"));
EXPECT_EQ("ello", b);
}
{
auto b = a;
EXPECT_TRUE(b.removePrefix('h'));
EXPECT_EQ("ello", b);
}
{
auto b = a;
EXPECT_TRUE(b.removePrefix("hello"));
EXPECT_EQ("", b);
}
{
auto b = a;
EXPECT_FALSE(b.removePrefix("hellox"));
EXPECT_EQ("hello", b);
}
{
auto b = a;
EXPECT_FALSE(b.removePrefix("x"));
EXPECT_EQ("hello", b);
}
{
auto b = a;
EXPECT_FALSE(b.removePrefix('x'));
EXPECT_EQ("hello", b);
}
}
TEST(StringPiece, Suffix) {
StringPiece a("hello");
EXPECT_TRUE(a.ends_with(""));
EXPECT_TRUE(a.ends_with("o"));
EXPECT_TRUE(a.ends_with('o'));
EXPECT_TRUE(a.ends_with("hello"));
EXPECT_FALSE(a.ends_with("xhello"));
EXPECT_FALSE(a.ends_with("x"));
EXPECT_FALSE(a.ends_with('x'));
EXPECT_TRUE(a.endsWith("", folly::AsciiCaseInsensitive()));
EXPECT_TRUE(a.endsWith("o", folly::AsciiCaseInsensitive()));
EXPECT_TRUE(a.endsWith("O", folly::AsciiCaseInsensitive()));
EXPECT_TRUE(a.endsWith("hello", folly::AsciiCaseInsensitive()));
EXPECT_TRUE(a.endsWith("hellO", folly::AsciiCaseInsensitive()));
EXPECT_FALSE(a.endsWith("xhello", folly::AsciiCaseInsensitive()));
EXPECT_FALSE(a.endsWith("Xhello", folly::AsciiCaseInsensitive()));
EXPECT_FALSE(a.endsWith("x", folly::AsciiCaseInsensitive()));
EXPECT_FALSE(a.endsWith("X", folly::AsciiCaseInsensitive()));
{
auto b = a;
EXPECT_TRUE(b.removeSuffix(""));
EXPECT_EQ("hello", b);
}
{
auto b = a;
EXPECT_TRUE(b.removeSuffix("o"));
EXPECT_EQ("hell", b);
}
{
auto b = a;
EXPECT_TRUE(b.removeSuffix('o'));
EXPECT_EQ("hell", b);
}
{
auto b = a;
EXPECT_TRUE(b.removeSuffix("hello"));
EXPECT_EQ("", b);
}
{
auto b = a;
EXPECT_FALSE(b.removeSuffix("xhello"));
EXPECT_EQ("hello", b);
}
{
auto b = a;
EXPECT_FALSE(b.removeSuffix("x"));
EXPECT_EQ("hello", b);
}
{
auto b = a;
EXPECT_FALSE(b.removeSuffix('x'));
EXPECT_EQ("hello", b);
}
}
TEST(StringPiece, Equals) {
StringPiece a("hello");
EXPECT_TRUE(a.equals("HELLO", AsciiCaseInsensitive()));
EXPECT_FALSE(a.equals("HELLOX", AsciiCaseInsensitive()));
}
TEST(StringPiece, PrefixEmpty) {
StringPiece a;
EXPECT_TRUE(a.startsWith(""));
EXPECT_FALSE(a.startsWith("a"));
EXPECT_FALSE(a.startsWith('a'));
EXPECT_TRUE(a.removePrefix(""));
EXPECT_EQ("", a);
EXPECT_FALSE(a.removePrefix("a"));
EXPECT_EQ("", a);
EXPECT_FALSE(a.removePrefix('a'));
EXPECT_EQ("", a);
}
TEST(StringPiece, SuffixEmpty) {
StringPiece a;
EXPECT_TRUE(a.endsWith(""));
EXPECT_FALSE(a.endsWith("a"));
EXPECT_FALSE(a.endsWith('a'));
EXPECT_TRUE(a.removeSuffix(""));
EXPECT_EQ("", a);
EXPECT_FALSE(a.removeSuffix("a"));
EXPECT_EQ("", a);
EXPECT_FALSE(a.removeSuffix('a'));
EXPECT_EQ("", a);
}
TEST(StringPiece, erase) {
StringPiece a("hello");
auto b = a.begin();
auto e = b + 1;
a.erase(b, e);
EXPECT_EQ("ello", a);
e = a.end();
b = e - 1;
a.erase(b, e);
EXPECT_EQ("ell", a);
b = a.end() - 1;
e = a.end() - 1;
EXPECT_THROW(a.erase(b, e), std::out_of_range);
b = a.begin();
e = a.end();
a.erase(b, e);
EXPECT_EQ("", a);
a = "hello";
b = a.begin();
e = b + 2;
a.erase(b, e);
EXPECT_EQ("llo", a);
b = a.end() - 2;
e = a.end();
a.erase(b, e);
EXPECT_EQ("l", a);
a = " hello ";
boost::algorithm::trim(a);
EXPECT_EQ(a, "hello");
}
TEST(StringPiece, splitStepCharDelimiter) {
// 0 1 2
// 012345678901234567890123456
auto const s = "this is just a test string";
auto const e = std::next(s, std::strlen(s));
EXPECT_EQ('\0', *e);
folly::StringPiece p(s);
EXPECT_EQ(s, p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ(s, p);
auto x = p.split_step(' ');
EXPECT_EQ(std::next(s, 5), p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ("this", x);
x = p.split_step(' ');
EXPECT_EQ(std::next(s, 8), p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ("is", x);
x = p.split_step('u');
EXPECT_EQ(std::next(s, 10), p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ("j", x);
x = p.split_step(' ');
EXPECT_EQ(std::next(s, 13), p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ("st", x);
x = p.split_step(' ');
EXPECT_EQ(std::next(s, 14), p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ("", x);
x = p.split_step(' ');
EXPECT_EQ(std::next(s, 16), p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ("a", x);
x = p.split_step(' ');
EXPECT_EQ(std::next(s, 21), p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ("test", x);
x = p.split_step(' ');
EXPECT_EQ(e, p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ("string", x);
x = p.split_step(' ');
EXPECT_EQ(e, p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ("", x);
}
TEST(StringPiece, splitStepRangeDelimiter) {
// 0 1 2 3
// 0123456789012345678901234567890123
auto const s = "this is just a test string";
auto const e = std::next(s, std::strlen(s));
EXPECT_EQ('\0', *e);
folly::StringPiece p(s);
EXPECT_EQ(s, p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ(s, p);
auto x = p.split_step(" ");
EXPECT_EQ(std::next(s, 6), p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ("this", x);
x = p.split_step(" ");
EXPECT_EQ(std::next(s, 10), p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ("is", x);
x = p.split_step("u");
EXPECT_EQ(std::next(s, 12), p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ("j", x);
x = p.split_step(" ");
EXPECT_EQ(std::next(s, 16), p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ("st", x);
x = p.split_step(" ");
EXPECT_EQ(std::next(s, 18), p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ("", x);
x = p.split_step(" ");
EXPECT_EQ(std::next(s, 21), p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ("a", x);
x = p.split_step(" ");
EXPECT_EQ(std::next(s, 28), p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ(" test", x);
x = p.split_step(" ");
EXPECT_EQ(e, p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ("string", x);
x = p.split_step(" ");
EXPECT_EQ(e, p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ("", x);
x = p.split_step(" ");
EXPECT_EQ(e, p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ("", x);
}
void split_step_with_process_noop(folly::StringPiece) {}
TEST(StringPiece, splitStepWithProcessCharDelimiter) {
// 0 1 2
// 012345678901234567890123456
auto const s = "this is just a test string";
auto const e = std::next(s, std::strlen(s));
EXPECT_EQ('\0', *e);
folly::StringPiece p(s);
EXPECT_EQ(s, p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ(s, p);
EXPECT_EQ(1, (p.split_step(' ', [&](folly::StringPiece x) {
EXPECT_EQ(std::next(s, 5), p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ("this", x);
return 1;
})));
EXPECT_EQ(2, (p.split_step(' ', [&](folly::StringPiece x) {
EXPECT_EQ(std::next(s, 8), p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ("is", x);
return 2;
})));
EXPECT_EQ(3, (p.split_step('u', [&](folly::StringPiece x) {
EXPECT_EQ(std::next(s, 10), p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ("j", x);
return 3;
})));
EXPECT_EQ(4, (p.split_step(' ', [&](folly::StringPiece x) {
EXPECT_EQ(std::next(s, 13), p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ("st", x);
return 4;
})));
EXPECT_EQ(5, (p.split_step(' ', [&](folly::StringPiece x) {
EXPECT_EQ(std::next(s, 14), p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ("", x);
return 5;
})));
EXPECT_EQ(6, (p.split_step(' ', [&](folly::StringPiece x) {
EXPECT_EQ(std::next(s, 16), p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ("a", x);
return 6;
})));
EXPECT_EQ(7, (p.split_step(' ', [&](folly::StringPiece x) {
EXPECT_EQ(std::next(s, 21), p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ("test", x);
return 7;
})));
EXPECT_EQ(8, (p.split_step(' ', [&](folly::StringPiece x) {
EXPECT_EQ(e, p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ("string", x);
return 8;
})));
EXPECT_EQ(9, (p.split_step(' ', [&](folly::StringPiece x) {
EXPECT_EQ(e, p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ("", x);
return 9;
})));
EXPECT_TRUE(
(std::is_same<
void,
decltype(p.split_step(' ', split_step_with_process_noop))>::value));
EXPECT_NO_THROW(p.split_step(' ', split_step_with_process_noop));
}
TEST(StringPiece, splitStepWithProcessRangeDelimiter) {
// 0 1 2 3
// 0123456789012345678901234567890123
auto const s = "this is just a test string";
auto const e = std::next(s, std::strlen(s));
EXPECT_EQ('\0', *e);
folly::StringPiece p(s);
EXPECT_EQ(s, p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ(s, p);
EXPECT_EQ(1, (p.split_step(" ", [&](folly::StringPiece x) {
EXPECT_EQ(std::next(s, 6), p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ("this", x);
return 1;
})));
EXPECT_EQ(2, (p.split_step(" ", [&](folly::StringPiece x) {
EXPECT_EQ(std::next(s, 10), p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ("is", x);
return 2;
})));
EXPECT_EQ(3, (p.split_step("u", [&](folly::StringPiece x) {
EXPECT_EQ(std::next(s, 12), p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ("j", x);
return 3;
})));
EXPECT_EQ(4, (p.split_step(" ", [&](folly::StringPiece x) {
EXPECT_EQ(std::next(s, 16), p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ("st", x);
return 4;
})));
EXPECT_EQ(5, (p.split_step(" ", [&](folly::StringPiece x) {
EXPECT_EQ(std::next(s, 18), p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ("", x);
return 5;
})));
EXPECT_EQ(6, (p.split_step(" ", [&](folly::StringPiece x) {
EXPECT_EQ(std::next(s, 21), p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ("a", x);
return 6;
})));
EXPECT_EQ(7, (p.split_step(" ", [&](folly::StringPiece x) {
EXPECT_EQ(std::next(s, 28), p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ(" test", x);
return 7;
})));
EXPECT_EQ(8, (p.split_step(" ", [&](folly::StringPiece x) {
EXPECT_EQ(e, p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ("string", x);
return 8;
})));
EXPECT_EQ(9, (p.split_step(" ", [&](folly::StringPiece x) {
EXPECT_EQ(e, p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ("", x);
return 9;
})));
EXPECT_EQ(10, (p.split_step(" ", [&](folly::StringPiece x) {
EXPECT_EQ(e, p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ("", x);
return 10;
})));
EXPECT_TRUE(
(std::is_same<
void,
decltype(p.split_step(' ', split_step_with_process_noop))>::value));
EXPECT_NO_THROW(p.split_step(' ', split_step_with_process_noop));
}
TEST(StringPiece, splitStepWithProcessCharDelimiterAdditionalArgs) {
// 0 1 2
// 012345678901234567890123456
auto const s = "this is just a test string";
auto const e = std::next(s, std::strlen(s));
auto const delimiter = ' ';
EXPECT_EQ('\0', *e);
folly::StringPiece p(s);
EXPECT_EQ(s, p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ(s, p);
auto const functor = [](folly::StringPiece s_, folly::StringPiece expected) {
EXPECT_EQ(expected, s_);
return expected;
};
auto const checker = [&](folly::StringPiece expected) {
EXPECT_EQ(expected, p.split_step(delimiter, functor, expected));
};
checker("this");
checker("is");
checker("just");
checker("");
checker("a");
checker("test");
checker("string");
checker("");
checker("");
EXPECT_TRUE(p.empty());
}
TEST(StringPiece, splitStepWithProcessRangeDelimiterAdditionalArgs) {
// 0 1 2 3
// 0123456789012345678901234567890123
auto const s = "this is just a test string";
auto const e = std::next(s, std::strlen(s));
auto const delimiter = " ";
EXPECT_EQ('\0', *e);
folly::StringPiece p(s);
EXPECT_EQ(s, p.begin());
EXPECT_EQ(e, p.end());
EXPECT_EQ(s, p);
auto const functor = [](folly::StringPiece s_, folly::StringPiece expected) {
EXPECT_EQ(expected, s_);
return expected;
};
auto const checker = [&](folly::StringPiece expected) {
EXPECT_EQ(expected, p.split_step(delimiter, functor, expected));
};
checker("this");
checker("is");
checker("just");
checker("");
checker("a");
checker(" test");
checker("string");
checker("");
checker("");
EXPECT_TRUE(p.empty());
}
TEST(StringPiece, NoInvalidImplicitConversions) {
struct IsString {
bool operator()(folly::Range<int*>) { return false; }
bool operator()(folly::StringPiece) { return true; }
};
std::string s = "hello";
EXPECT_TRUE(IsString()(s));
}
TEST(qfind, UInt32Ranges) {
vector<uint32_t> a({1, 2, 3, 260, 5});
vector<uint32_t> b({2, 3, 4});
auto a_range = folly::Range<const uint32_t*>(&a[0], a.size());
auto b_range = folly::Range<const uint32_t*>(&b[0], b.size());
EXPECT_EQ(qfind(a_range, b_range), string::npos);
a[3] = 4;
EXPECT_EQ(qfind(a_range, b_range), 1);
}
template <typename NeedleFinder>
class NeedleFinderTest : public ::testing::Test {
public:
static size_t find_first_byte_of(StringPiece haystack, StringPiece needles) {
return NeedleFinder::find_first_byte_of(haystack, needles);
}
};
struct SseNeedleFinder {
static size_t find_first_byte_of(StringPiece haystack, StringPiece needles) {
// This will only use the SSE version if it is supported on this CPU
// (selected using ifunc).
return detail::qfind_first_byte_of(haystack, needles);
}
};
struct NoSseNeedleFinder {
static size_t find_first_byte_of(StringPiece haystack, StringPiece needles) {
return detail::qfind_first_byte_of_nosse(haystack, needles);
}
};
struct ByteSetNeedleFinder {
static size_t find_first_byte_of(StringPiece haystack, StringPiece needles) {
return detail::qfind_first_byte_of_byteset(haystack, needles);
}
};
using NeedleFinders =
::testing::Types<SseNeedleFinder, NoSseNeedleFinder, ByteSetNeedleFinder>;
TYPED_TEST_SUITE(NeedleFinderTest, NeedleFinders);
TYPED_TEST(NeedleFinderTest, Null) {
{ // null characters in the string
string s(10, char(0));
s[5] = 'b';
string delims("abc");
EXPECT_EQ(5, this->find_first_byte_of(s, delims));
}
{ // null characters in delim
string s("abc");
string delims(10, char(0));
delims[3] = 'c';
delims[7] = 'b';
EXPECT_EQ(1, this->find_first_byte_of(s, delims));
}
{ // range not terminated by null character
string buf = "abcdefghijklmnopqrstuvwxyz";
StringPiece s(buf.data() + 5, 3);
StringPiece delims("z");
EXPECT_EQ(string::npos, this->find_first_byte_of(s, delims));
}
}
TYPED_TEST(NeedleFinderTest, DelimDuplicates) {
string delims(1000, 'b');
EXPECT_EQ(1, this->find_first_byte_of("abc", delims));
EXPECT_EQ(string::npos, this->find_first_byte_of("ac", delims));
}
TYPED_TEST(NeedleFinderTest, Empty) {
string a = "abc";
string b = "";
EXPECT_EQ(string::npos, this->find_first_byte_of(a, b));
EXPECT_EQ(string::npos, this->find_first_byte_of(b, a));
EXPECT_EQ(string::npos, this->find_first_byte_of(b, b));
}
TYPED_TEST(NeedleFinderTest, Unaligned) {
// works correctly even if input buffers are not 16-byte aligned
string s = "0123456789ABCDEFGH";
for (size_t i = 0; i < s.size(); ++i) {
StringPiece a(s.c_str() + i);
for (size_t j = 0; j < s.size(); ++j) {
StringPiece b(s.c_str() + j);
EXPECT_EQ((i > j) ? 0 : j - i, this->find_first_byte_of(a, b));
}
}
}
// for some algorithms (specifically those that create a set of needles),
// we check for the edge-case of _all_ possible needles being sought.
TYPED_TEST(NeedleFinderTest, Needles256) {
string needles;
const auto minValue = std::numeric_limits<StringPiece::value_type>::min();
const auto maxValue = std::numeric_limits<StringPiece::value_type>::max();
// make the size ~big to avoid any edge-case branches for tiny haystacks
const int haystackSize = 50;
for (int i = minValue; i <= maxValue; i++) { // <=
needles.push_back(i);
}
EXPECT_EQ(StringPiece::npos, this->find_first_byte_of("", needles));
for (int i = minValue; i <= maxValue; i++) {
EXPECT_EQ(0, this->find_first_byte_of(string(haystackSize, i), needles));
}
needles.append("these are redundant characters");
EXPECT_EQ(StringPiece::npos, this->find_first_byte_of("", needles));
for (int i = minValue; i <= maxValue; i++) {
EXPECT_EQ(0, this->find_first_byte_of(string(haystackSize, i), needles));
}
}
TYPED_TEST(NeedleFinderTest, Base) {
for (size_t i = 0; i < 32; ++i) {
for (int j = 0; j < 32; ++j) {
string s = string(i, 'X') + "abca" + string(i, 'X');
string delims = string(j, 'Y') + "a" + string(j, 'Y');
EXPECT_EQ(i, this->find_first_byte_of(s, delims));
}
}
}
const size_t kPageSize = sysconf(_SC_PAGESIZE);
// Updates contents so that any read accesses past the last byte will
// cause a SIGSEGV. It accomplishes this by changing access to the page that
// begins immediately after the end of the contents (as allocators and mmap()
// all operate on page boundaries, this is a reasonable assumption).
// This function will also initialize buf, which caller must free().
void createProtectedBuf(StringPiece& contents, char** buf) {
ASSERT_LE(contents.size(), kPageSize);
char* pageAlignedBuf = (char*)aligned_malloc(2 * kPageSize, kPageSize);
if (pageAlignedBuf == nullptr) {
FAIL();
}
// Protect the page after the first full page-aligned region of the
// malloc'ed buffer
mprotect(pageAlignedBuf + kPageSize, kPageSize, PROT_NONE);
size_t newBegin = kPageSize - contents.size();
memcpy(pageAlignedBuf + newBegin, contents.data(), contents.size());
contents.reset(pageAlignedBuf + newBegin, contents.size());
*buf = pageAlignedBuf;
}
void freeProtectedBuf(char* buf) {
mprotect(buf + kPageSize, kPageSize, PROT_READ | PROT_WRITE);
aligned_free(buf);
}
TYPED_TEST(NeedleFinderTest, NoSegFault) {
const string base = string(32, 'a') + string("b");
const string delims = string(32, 'c') + string("b");
for (int i = 0; i <= 32; i++) {
for (int j = 0; j <= 33; j++) {
for (int shouldFind = 0; shouldFind <= 1; ++shouldFind) {
StringPiece s1(base);
s1.advance(i);
ASSERT_TRUE(!s1.empty());
if (!shouldFind) {
s1.pop_back();
}
StringPiece s2(delims);
s2.advance(j);
char* buf1;
char* buf2;
createProtectedBuf(s1, &buf1);
createProtectedBuf(s2, &buf2);
// printf("s1: '%s' (%ld) \ts2: '%s' (%ld)\n",
// string(s1.data(), s1.size()).c_str(), s1.size(),
// string(s2.data(), s2.size()).c_str(), s2.size());
auto r1 = this->find_first_byte_of(s1, s2);
auto f1 =
std::find_first_of(s1.begin(), s1.end(), s2.begin(), s2.end());
auto e1 = (f1 == s1.end()) ? StringPiece::npos : f1 - s1.begin();
EXPECT_EQ(r1, e1);
auto r2 = this->find_first_byte_of(s2, s1);
auto f2 =
std::find_first_of(s2.begin(), s2.end(), s1.begin(), s1.end());
auto e2 = (f2 == s2.end()) ? StringPiece::npos : f2 - s2.begin();
EXPECT_EQ(r2, e2);
freeProtectedBuf(buf1);
freeProtectedBuf(buf2);
}
}
}
}
TEST(NonConstTest, StringPiece) {
std::string hello("hello");
MutableStringPiece sp(&hello.front(), hello.size());
sp[0] = 'x';
EXPECT_EQ("xello", hello);
{
StringPiece s(sp);
EXPECT_EQ("xello", s);
}
{
ByteRange r1(sp);
MutableByteRange r2(sp);
}
}
// Similar to the begin() template functions, but instread of returing
// an iterator, return a pointer to data.
template <class Container>
typename Container::value_type* dataPtr(Container& cont) {
// NOTE: &cont[0] is undefined if cont is empty (it creates a
// reference to nullptr - which is not dereferenced, but still UBSAN).
return cont.data();
}
template <class T, size_t N>
constexpr T* dataPtr(T (&arr)[N]) noexcept {
return &arr[0];
}
template <class C>
void testRangeFunc(C&& x, size_t n) {
const auto& cx = x;
// type, conversion checks
using R1Iter =
std::conditional_t<_t<std::is_reference<C>>::value, int*, int const*>;
Range<R1Iter> r1 = range(std::forward<C>(x));
Range<const int*> r2 = range(std::forward<C>(x));
Range<const int*> r3 = range(cx);
Range<const int*> r5 = range(std::move(cx));
EXPECT_EQ(r1.begin(), dataPtr(x));
EXPECT_EQ(r1.end(), dataPtr(x) + n);
EXPECT_EQ(n, r1.size());
EXPECT_EQ(n, r2.size());
EXPECT_EQ(n, r3.size());
EXPECT_EQ(n, r5.size());
}
TEST(RangeFunc, Vector) {
std::vector<int> x;
testRangeFunc(x, 0);
x.push_back(2);
testRangeFunc(x, 1);
testRangeFunc(std::vector<int>{1, 2}, 2);
}
TEST(RangeFunc, Array) {
std::array<int, 3> x;
testRangeFunc(x, 3);
}
TEST(RangeFunc, CArray) {
int x[]{1, 2, 3, 4};
testRangeFunc(x, 4);
}
TEST(RangeFunc, ConstexprCArray) {
static constexpr const int numArray[4] = {3, 17, 1, 9};
constexpr const auto numArrayRange = range(numArray);
EXPECT_EQ(17, numArrayRange[1]);
constexpr const auto numArrayRangeSize = numArrayRange.size();
EXPECT_EQ(4, numArrayRangeSize);
}
TEST(RangeFunc, ConstexprStdArray) {
static constexpr const std::array<int, 4> numArray = {{3, 17, 1, 9}};
constexpr const auto numArrayRange = range(numArray);
EXPECT_EQ(17, numArrayRange[1]);
constexpr const auto numArrayRangeSize = numArrayRange.size();
EXPECT_EQ(4, numArrayRangeSize);
}
TEST(RangeFunc, ConstexprStdArrayZero) {
static constexpr const std::array<int, 0> numArray = {};
constexpr const auto numArrayRange = range(numArray);
constexpr const auto numArrayRangeSize = numArrayRange.size();
EXPECT_EQ(0, numArrayRangeSize);
}
TEST(RangeFunc, ConstexprIteratorPair) {
static constexpr const int numArray[4] = {3, 17, 1, 9};
constexpr const auto numPtr = static_cast<const int*>(numArray);
constexpr const auto numIterRange = range(numPtr + 1, numPtr + 3);
EXPECT_EQ(1, numIterRange[1]);
constexpr const auto numIterRangeSize = numIterRange.size();
EXPECT_EQ(2, numIterRangeSize);
}
TEST(RangeFunc, ConstexprCollection) {
class IntCollection {
public:
constexpr IntCollection(const int* d, size_t s) : data_(d), size_(s) {}
constexpr const int* data() const { return data_; }
constexpr size_t size() const { return size_; }
private:
const int* data_;
size_t size_;
};
static constexpr const int numArray[4] = {3, 17, 1, 9};
constexpr const auto numPtr = static_cast<const int*>(numArray);
constexpr const auto numColl = IntCollection(numPtr + 1, 2);
constexpr const auto numCollRange = range(numColl);
EXPECT_EQ(1, numCollRange[1]);
constexpr const auto numCollRangeSize = numCollRange.size();
EXPECT_EQ(2, numCollRangeSize);
}
TEST(CRangeFunc, CArray) {
int numArray[4] = {3, 17, 1, 9};
auto const numArrayRange = crange(numArray);
EXPECT_TRUE(
(std::is_same<int const*, decltype(numArrayRange)::iterator>::value));
EXPECT_THAT(numArrayRange, testing::ElementsAreArray(numArray));
}
TEST(CRangeFunc, StdArray) {
std::array<int, 4> numArray = {{3, 17, 1, 9}};
auto const numArrayRange = crange(numArray);
EXPECT_TRUE(
(std::is_same<int const*, decltype(numArrayRange)::iterator>::value));
EXPECT_THAT(numArrayRange, testing::ElementsAreArray(numArray));
}
TEST(CRangeFunc, StdArrayZero) {
std::array<int, 0> numArray = {};
auto const numArrayRange = crange(numArray);
EXPECT_TRUE(
(std::is_same<int const*, decltype(numArrayRange)::iterator>::value));
EXPECT_THAT(numArrayRange, testing::IsEmpty());
}
TEST(CRangeFunc, Collection) {
class IntCollection {
public:
constexpr IntCollection(int* d, size_t s) : data_(d), size_(s) {}
constexpr int const* data() const { return data_; }
constexpr size_t size() const { return size_; }
private:
int* data_;
size_t size_;
};
int numArray[4] = {3, 17, 1, 9};
auto numPtr = static_cast<int*>(numArray);
auto numColl = IntCollection(numPtr + 1, 2);
auto const numCollRange = crange(numColl);
EXPECT_TRUE(
(std::is_same<int const*, decltype(numCollRange)::iterator>::value));
EXPECT_THAT(numCollRange, testing::ElementsAreArray({17, 1}));
}
TEST(Range, CompareChar) {
EXPECT_EQ(""_sp, ""_sp);
EXPECT_LT(""_sp, "world"_sp);
EXPECT_GT("world"_sp, ""_sp);
EXPECT_EQ("hello"_sp, "hello"_sp);
EXPECT_LT("hello"_sp, "world"_sp);
EXPECT_LT("hello"_sp, "helloworld"_sp);
EXPECT_GT("world"_sp, "hello"_sp);
EXPECT_GT("helloworld"_sp, "hello"_sp);
}
TEST(Range, CompareByte) {
auto br = [](auto sp) { return ByteRange(sp); };
EXPECT_CMP_EQ(br(""_sp), br(""_sp));
EXPECT_CMP_LT(br(""_sp), br("world"_sp));
EXPECT_CMP_GT(br("world"_sp), br(""_sp));
EXPECT_CMP_EQ(br("hello"_sp), br("hello"_sp));
EXPECT_CMP_LT(br("hello"_sp), br("world"_sp));
EXPECT_CMP_LT(br("hello"_sp), br("helloworld"_sp));
EXPECT_CMP_GT(br("world"_sp), br("hello"_sp));
EXPECT_CMP_GT(br("helloworld"_sp), br("hello"_sp));
}
TEST(Range, CompareFbck) {
auto vr = [](std::vector<int> const& _) { return folly::range(_); };
EXPECT_CMP_EQ(vr({}), vr({}));
EXPECT_CMP_LT(vr({}), vr({1}));
EXPECT_CMP_GT(vr({1}), vr({}));
EXPECT_CMP_EQ(vr({1}), vr({1}));
EXPECT_CMP_LT(vr({1}), vr({2}));
EXPECT_CMP_LT(vr({1}), vr({1, 2}));
EXPECT_CMP_GT(vr({2}), vr({1}));
EXPECT_CMP_GT(vr({1, 1}), vr({1}));
EXPECT_CMP_EQ(vr({2, 3, 4}), vr({2, 3, 4}));
EXPECT_CMP_LT(vr({2, 3, 4}), vr({2, 3, 5}));
EXPECT_CMP_GT(vr({2, 3, 5}), vr({2, 3, 4}));
}
TEST(Range, CompareDouble) {
auto vr = [](std::vector<float> const& _) { return folly::range(_); };
EXPECT_CMP_EQ(vr({}), vr({}));
EXPECT_CMP_LT(vr({}), vr({1.}));
EXPECT_CMP_GT(vr({1.}), vr({}));
EXPECT_CMP_EQ(vr({1.}), vr({1.}));
EXPECT_CMP_LT(vr({1.}), vr({2.}));
EXPECT_CMP_LT(vr({1.}), vr({1., 2.}));
EXPECT_CMP_GT(vr({2.}), vr({1.}));
EXPECT_CMP_GT(vr({1., 1.}), vr({1.}));
EXPECT_CMP_EQ(vr({2., 3., 4.}), vr({2., 3., 4.}));
EXPECT_CMP_LT(vr({2., 3., 4.}), vr({2., 3., 5.}));
EXPECT_CMP_GT(vr({2., 3., 5.}), vr({2., 3., 4.}));
}
std::string get_rand_str(
size_t size, std::uniform_int_distribution<>& dist, std::mt19937& gen) {
std::string ret(size, '\0');
for (size_t i = 0; i < size; ++i) {
ret[i] = static_cast<char>(dist(gen));
}
return ret;
}
namespace folly {
bool operator==(MutableStringPiece mp, StringPiece sp) {
return mp.compare(sp) == 0;
}
bool operator==(StringPiece sp, MutableStringPiece mp) {
return mp.compare(sp) == 0;
}
} // namespace folly
TEST(ReplaceAt, exhaustiveTest) {
char input[] = "this is nice and long input";
auto msp = MutableStringPiece(input);
auto str = std::string(input);
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<> dist('a', 'z');
for (int i = 0; i < 100; ++i) {
for (size_t j = 1; j <= msp.size(); ++j) {
auto replacement = get_rand_str(j, dist, gen);
for (size_t pos = 0; pos < msp.size() - j; ++pos) {
msp.replaceAt(pos, replacement);
str.replace(pos, replacement.size(), replacement);
EXPECT_EQ(msp.compare(str), 0);
}
}
}
// too far
EXPECT_EQ(msp.replaceAt(msp.size() - 2, StringPiece("meh")), false);
}
TEST(ReplaceAll, basicTest) {
char input[] = "this is nice and long input";
auto orig = std::string(input);
auto msp = MutableStringPiece(input);
EXPECT_EQ(msp.replaceAll("is", "si"), 2);
EXPECT_EQ("thsi si nice and long input", msp);
EXPECT_EQ(msp.replaceAll("si", "is"), 2);
EXPECT_EQ(msp, orig);
EXPECT_EQ(msp.replaceAll("abcd", "efgh"), 0); // nothing to replace
EXPECT_EQ(msp, orig);
// at the very beginning
EXPECT_EQ(msp.replaceAll("this", "siht"), 1);
EXPECT_EQ("siht is nice and long input", msp);
EXPECT_EQ(msp.replaceAll("siht", "this"), 1);
EXPECT_EQ(msp, orig);
// at the very end
EXPECT_EQ(msp.replaceAll("input", "soput"), 1);
EXPECT_EQ("this is nice and long soput", msp);
EXPECT_EQ(msp.replaceAll("soput", "input"), 1);
EXPECT_EQ(msp, orig);
// all spaces
EXPECT_EQ(msp.replaceAll(" ", "@"), 5);
EXPECT_EQ("this@is@nice@and@long@input", msp);
EXPECT_EQ(msp.replaceAll("@", " "), 5);
EXPECT_EQ(msp, orig);
}
TEST(ReplaceAll, randomTest) {
char input[] = "abcdefghijklmnoprstuwqz"; // no pattern repeata inside
auto orig = std::string(input);
auto msp = MutableStringPiece(input);
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<> dist('A', 'Z');
for (int i = 0; i < 100; ++i) {
for (size_t j = 1; j <= orig.size(); ++j) {
auto replacement = get_rand_str(j, dist, gen);
for (size_t pos = 0; pos < msp.size() - j; ++pos) {
auto piece = orig.substr(pos, j);
EXPECT_EQ(msp.replaceAll(piece, replacement), 1);
EXPECT_EQ(msp.find(replacement), pos);
EXPECT_EQ(msp.replaceAll(replacement, piece), 1);
EXPECT_EQ(msp, orig);
}
}
}
}
TEST(ReplaceAll, BadArg) {
int count = 0;
auto fst = "longer";
auto snd = "small";
char input[] = "meh meh meh";
auto all = MutableStringPiece(input);
try {
all.replaceAll(fst, snd);
} catch (std::invalid_argument&) {
++count;
}
try {
all.replaceAll(snd, fst);
} catch (std::invalid_argument&) {
++count;
}
EXPECT_EQ(count, 2);
}
TEST(Range, Constructors) {
vector<int> c = {1, 2, 3};
typedef Range<vector<int>::iterator> RangeType;
typedef Range<vector<int>::const_iterator> ConstRangeType;
RangeType cr(c.begin(), c.end());
auto subpiece1 = ConstRangeType(cr, 1, 5);
auto subpiece2 = ConstRangeType(cr, 1);
EXPECT_EQ(subpiece1.size(), 2);
EXPECT_EQ(subpiece1.begin(), subpiece2.begin());
EXPECT_EQ(subpiece1.end(), subpiece2.end());
EXPECT_EQ(StringPiece("hello world").substr(5, 1), " ");
}
TEST(Range, ArrayConstructors) {
auto charArray = std::array<char, 4>{{'t', 'e', 's', 't'}};
auto constCharArray = std::array<char, 6>{{'f', 'o', 'o', 'b', 'a', 'r'}};
auto emptyArray = std::array<char, 0>{};
auto sp1 = StringPiece{charArray};
EXPECT_EQ(4, sp1.size());
EXPECT_EQ(charArray.data(), sp1.data());
auto sp2 = StringPiece(constCharArray);
EXPECT_EQ(6, sp2.size());
EXPECT_EQ(constCharArray.data(), sp2.data());
auto msp = MutableStringPiece(charArray);
EXPECT_EQ(4, msp.size());
EXPECT_EQ(charArray.data(), msp.data());
auto esp = StringPiece(emptyArray);
EXPECT_EQ(0, esp.size());
EXPECT_EQ(nullptr, esp.data());
auto emsp = MutableStringPiece(emptyArray);
EXPECT_EQ(0, emsp.size());
EXPECT_EQ(nullptr, emsp.data());
static constexpr std::array<int, 4> numArray = {{3, 17, 1, 9}};
constexpr auto numRange = Range<const int*>{numArray};
EXPECT_EQ(17, numRange[1]);
static constexpr std::array<int, 0> emptyNumArray{};
constexpr auto emptyNumRange = Range<const int*>{emptyNumArray};
EXPECT_EQ(0, emptyNumRange.size());
}
TEST(Range, ConstexprAccessors) {
constexpr StringPiece piece = range("hello");
static_assert(piece.size() == 6u, "");
static_assert(piece.end() - piece.begin() == 6u, "");
static_assert(piece.data() == piece.begin(), "");
static_assert(piece.start() == piece.begin(), "");
static_assert(piece.cbegin() == piece.begin(), "");
static_assert(piece.cend() == piece.end(), "");
static_assert(*piece.begin() == 'h', "");
static_assert(*(piece.end() - 1) == '\0', "");
}
TEST(Range, LiteralSuffix) {
constexpr auto literalPiece = "hello"_sp;
constexpr StringPiece piece = "hello";
EXPECT_EQ(literalPiece, piece);
#if __cplusplus <= 202001L
constexpr auto literalPiece8 = u8"hello"_sp;
#if __cpp_char8_t >= 201811L
constexpr Range<char8_t const*> piece8 = u8"hello";
#else
constexpr Range<char const*> piece8 = u8"hello";
#endif
EXPECT_EQ(literalPiece8, piece8);
#endif
constexpr auto literalPiece16 = u"hello"_sp;
constexpr Range<char16_t const*> piece16{u"hello", 5};
EXPECT_EQ(literalPiece16, piece16);
constexpr auto literalPiece32 = U"hello"_sp;
constexpr Range<char32_t const*> piece32{U"hello", 5};
EXPECT_EQ(literalPiece32, piece32);
constexpr auto literalPieceW = L"hello"_sp;
constexpr Range<wchar_t const*> pieceW{L"hello", 5};
EXPECT_EQ(literalPieceW, pieceW);
}
TEST(Range, LiteralSuffixContainsNulBytes) {
constexpr auto literalPiece = "\0foo\0"_sp;
EXPECT_EQ(5u, literalPiece.size());
}
namespace {
class fake_tag {};
class fake_string_view {
private:
StringPiece piece_;
public:
using size_type = std::size_t;
explicit fake_string_view(char const* s, size_type c, fake_tag = {})
: piece_(s, c) {}
/* implicit */ operator StringPiece() const { return piece_; }
friend bool operator==(char const* rhs, fake_string_view lhs) {
return rhs == lhs.piece_;
}
};
} // namespace
TEST(Range, StringPieceExplicitConversionOperator) {
using PieceM = StringPiece;
using PieceC = StringPiece const;
EXPECT_FALSE((std::is_convertible<PieceM, int>::value));
EXPECT_FALSE((std::is_convertible<PieceM, std::string>::value));
EXPECT_FALSE((std::is_convertible<PieceM, std::vector<char>>::value));
EXPECT_FALSE((std::is_convertible<PieceM, fake_string_view>::value));
EXPECT_FALSE((std::is_constructible<int, PieceM>::value));
EXPECT_TRUE((std::is_constructible<std::string, PieceM>::value));
EXPECT_TRUE((std::is_constructible<std::vector<char>, PieceM>::value));
EXPECT_TRUE((std::is_constructible<fake_string_view, PieceM>::value));
EXPECT_FALSE((std::is_convertible<PieceC, int>::value));
EXPECT_FALSE((std::is_convertible<PieceC, std::string>::value));
EXPECT_FALSE((std::is_convertible<PieceC, std::vector<char>>::value));
EXPECT_FALSE((std::is_convertible<PieceC, fake_string_view>::value));
EXPECT_FALSE((std::is_constructible<int, PieceC>::value));
EXPECT_TRUE((std::is_constructible<std::string, PieceC>::value));
EXPECT_TRUE((std::is_constructible<std::vector<char>, PieceC>::value));
EXPECT_TRUE((std::is_constructible<fake_string_view, PieceC>::value));
using testing::ElementsAreArray;
std::array<char, 5> array = {{'h', 'e', 'l', 'l', 'o'}};
PieceM piecem{array};
PieceC piecec{array};
std::allocator<char> alloc;
EXPECT_EQ("hello", std::string(piecem));
EXPECT_EQ("hello", std::string(piecec));
EXPECT_EQ("hello", std::string{piecem});
EXPECT_EQ("hello", std::string{piecec});
EXPECT_EQ("hello", piecem.to<std::string>());
EXPECT_EQ("hello", piecec.to<std::string>());
EXPECT_EQ("hello", piecem.to<std::string>(alloc));
EXPECT_EQ("hello", piecec.to<std::string>(alloc));
EXPECT_THAT(std::vector<char>(piecem), ElementsAreArray(array));
EXPECT_THAT(std::vector<char>(piecec), ElementsAreArray(array));
EXPECT_THAT(std::vector<char>{piecem}, ElementsAreArray(array));
EXPECT_THAT(std::vector<char>{piecec}, ElementsAreArray(array));
EXPECT_THAT(piecem.to<std::vector<char>>(), ElementsAreArray(array));
EXPECT_THAT(piecec.to<std::vector<char>>(), ElementsAreArray(array));
EXPECT_THAT(piecem.to<std::vector<char>>(alloc), ElementsAreArray(array));
EXPECT_THAT(piecec.to<std::vector<char>>(alloc), ElementsAreArray(array));
EXPECT_EQ("hello", fake_string_view(piecem));
EXPECT_EQ("hello", fake_string_view(piecec));
EXPECT_EQ("hello", fake_string_view{piecem});
EXPECT_EQ("hello", fake_string_view{piecec});
EXPECT_EQ("hello", piecem.to<fake_string_view>());
EXPECT_EQ("hello", piecec.to<fake_string_view>());
EXPECT_EQ("hello", piecem.to<fake_string_view>(fake_tag{}));
EXPECT_EQ("hello", piecec.to<fake_string_view>(fake_tag{}));
}
TEST(Range, MutableStringPieceExplicitConversionOperator) {
using PieceM = MutableStringPiece;
using PieceC = MutableStringPiece const;
EXPECT_FALSE((std::is_convertible<PieceM, int>::value));
EXPECT_FALSE((std::is_convertible<PieceM, std::string>::value));
EXPECT_FALSE((std::is_convertible<PieceM, std::vector<char>>::value));
EXPECT_FALSE((std::is_convertible<PieceM, fake_string_view>::value));
EXPECT_FALSE((std::is_constructible<int, PieceM>::value));
EXPECT_TRUE((std::is_constructible<std::string, PieceM>::value));
EXPECT_TRUE((std::is_constructible<std::vector<char>, PieceM>::value));
EXPECT_TRUE((std::is_constructible<fake_string_view, PieceM>::value));
EXPECT_FALSE((std::is_convertible<PieceC, int>::value));
EXPECT_FALSE((std::is_convertible<PieceC, std::string>::value));
EXPECT_FALSE((std::is_convertible<PieceC, std::vector<char>>::value));
EXPECT_FALSE((std::is_convertible<PieceC, fake_string_view>::value));
EXPECT_FALSE((std::is_constructible<int, PieceC>::value));
EXPECT_TRUE((std::is_constructible<std::string, PieceC>::value));
EXPECT_TRUE((std::is_constructible<std::vector<char>, PieceC>::value));
EXPECT_TRUE((std::is_constructible<fake_string_view, PieceC>::value));
using testing::ElementsAreArray;
std::array<char, 5> array = {{'h', 'e', 'l', 'l', 'o'}};
PieceM piecem{array};
PieceC piecec{array};
std::allocator<char> alloc;
EXPECT_EQ("hello", std::string(piecem));
EXPECT_EQ("hello", std::string(piecec));
EXPECT_EQ("hello", std::string{piecem});
EXPECT_EQ("hello", std::string{piecec});
EXPECT_EQ("hello", piecem.to<std::string>());
EXPECT_EQ("hello", piecec.to<std::string>());
EXPECT_EQ("hello", piecem.to<std::string>(alloc));
EXPECT_EQ("hello", piecec.to<std::string>(alloc));
EXPECT_THAT(std::vector<char>(piecem), ElementsAreArray(array));
EXPECT_THAT(std::vector<char>(piecec), ElementsAreArray(array));
EXPECT_THAT(std::vector<char>{piecem}, ElementsAreArray(array));
EXPECT_THAT(std::vector<char>{piecec}, ElementsAreArray(array));
EXPECT_THAT(piecem.to<std::vector<char>>(), ElementsAreArray(array));
EXPECT_THAT(piecec.to<std::vector<char>>(), ElementsAreArray(array));
EXPECT_THAT(piecem.to<std::vector<char>>(alloc), ElementsAreArray(array));
EXPECT_THAT(piecec.to<std::vector<char>>(alloc), ElementsAreArray(array));
EXPECT_EQ("hello", fake_string_view(piecem));
EXPECT_EQ("hello", fake_string_view(piecec));
EXPECT_EQ("hello", fake_string_view{piecem});
EXPECT_EQ("hello", fake_string_view{piecec});
EXPECT_EQ("hello", piecem.to<fake_string_view>());
EXPECT_EQ("hello", piecec.to<fake_string_view>());
EXPECT_EQ("hello", piecem.to<fake_string_view>(fake_tag{}));
EXPECT_EQ("hello", piecec.to<fake_string_view>(fake_tag{}));
}
TEST(Range, InitializerList) {
auto check = [](Range<int const*> r) {
ASSERT_EQ(r.size(), 3);
EXPECT_EQ(*r.begin(), 1);
EXPECT_EQ(*(r.begin() + 1), 2);
EXPECT_EQ(*(r.begin() + 2), 3);
};
check(range({1, 2, 3}));
check(crange({1, 2, 3}));
static constexpr auto ilist = {1, 2, 3};
check(range(ilist));
check(crange(ilist));
}
namespace {
std::size_t stringViewSize(std::string_view s) {
return s.size();
}
std::size_t stringPieceSize(StringPiece s) {
return s.size();
}
struct TrickyTarget {
TrickyTarget(char const*, char const*) : which{1} {}
TrickyTarget(char const*, std::size_t) : which{2} {}
TrickyTarget(std::string_view) : which{3} {}
int which;
};
struct TrickierTarget {
TrickierTarget(std::deque<char>::const_iterator, std::size_t) : which{1} {}
TrickierTarget(std::string_view) : which{2} {}
int which;
};
} // namespace
TEST(StringPiece, StringViewConversion) {
StringPiece piece("foo");
std::string str("bar");
MutableStringPiece mut(str.data(), str.size());
std::string_view view("baz");
EXPECT_EQ(stringViewSize(piece), 3);
EXPECT_EQ(stringViewSize(str), 3);
EXPECT_EQ(stringViewSize(mut), 3);
EXPECT_EQ(stringPieceSize(mut), 3);
EXPECT_EQ(stringPieceSize(str), 3);
EXPECT_EQ(stringPieceSize(view), 3);
view = mut;
piece = view;
EXPECT_EQ(piece[2], 'r');
piece = "quux";
view = piece;
EXPECT_EQ(view.size(), 4);
TrickyTarget tt1(piece);
EXPECT_EQ(tt1.which, 3);
TrickyTarget tt2(view);
EXPECT_EQ(tt2.which, 3);
std::deque<char> deq;
deq.push_back('a');
deq.push_back('b');
deq.push_back('c');
Range<std::deque<char>::const_iterator> deqRange{deq.begin(), deq.end()};
TrickierTarget tt3(deqRange);
EXPECT_EQ(tt3.which, 1);
}
TEST(StringPiece, Format) {
EXPECT_EQ(" foo", fmt::format("{:>5}", folly::StringPiece("foo")));
}
namespace {
// Range with non-pod value type should not cause compile errors.
class NonPOD {
public:
NonPOD() {}
};
[[maybe_unused]] void test_func(Range<const NonPOD*>) {}
} // anonymous namespace
namespace {
// Nested class should not cause compile errors due to incomplete parent
class Parent {
struct Nested : Range<const Parent*> {};
};
} // namespace