/* * Copyright (c) Meta Platforms, Inc. and affiliates. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include <cstdint> #include <functional> #include <limits> #include <memory> #include <tuple> #include <type_traits> #include <folly/Portability.h> namespace folly { #if defined(__cpp_lib_type_identity) && __cpp_lib_type_identity >= 201806L using std::type_identity; using std::type_identity_t; #else /// type_identity_t /// type_identity /// /// mimic: std::type_identity_t, std::type_identity, c++20 template <typename T> struct type_identity { … }; type_identity_t; #endif /// tag_t /// tag /// /// A generic type-list value type and value. /// /// A type-list is a class template parameterized by a pack of types. template <typename...> struct tag_t { … }; tag; /// vtag_t /// vtag /// /// A generic value-list value type and value. /// /// A value-list is a class template parameterized by a pack of values. template <auto...> struct vtag_t { … }; vtag; index_constant; /// always_false /// /// A variable template that is always false but requires template arguments to /// be provided (which are then ignored). This is useful in very specific cases /// where we want type-dependent expressions to defer static_assert's. /// /// A common use-case is for exhaustive constexpr if branches: /// /// template <typename T> /// void foo(T value) { /// if constexpr (std::is_integral_v<T>) foo_integral(value); /// else if constexpr (std::is_same_v<T, std::string>) foo_string(value); /// else static_assert(always_false<T>, "Unsupported type"); /// } /// /// If we had used static_assert(false), then this would always fail to compile, /// even if foo is never instantiated! /// /// Another use case is if a template that is expected to always be specialized /// is erroneously instantiated with the base template. /// /// template <typename T> /// struct Foo { /// static_assert(always_false<T>, "Unsupported type"); /// }; /// template <> /// struct Foo<int> {}; /// /// Foo<int> a; // fine /// Foo<std::string> b; // fails! And you get a nice (custom) error message /// /// This is similar to leaving the base template undefined but we get a nicer /// compiler error message with static_assert. always_false; namespace detail { template <typename Void, typename T> struct require_sizeof_ { … }; require_sizeof_<decltype(void(sizeof(T))), T>; } // namespace detail /// require_sizeof /// /// Equivalent to sizeof, but with a static_assert enforcing that application of /// sizeof would not fail substitution. require_sizeof; /// is_unbounded_array_v /// is_unbounded_array /// /// A trait variable and type to check if a given type is an unbounded array. /// /// mimic: std::is_unbounded_array_d, std::is_unbounded_array (C++20) is_unbounded_array_v; is_unbounded_array_v; template <typename T> struct is_unbounded_array : std::bool_constant<is_unbounded_array_v<T>> { … }; /// is_bounded_array_v /// is_bounded_array /// /// A trait variable and type to check if a given type is a bounded array. /// /// mimic: std::is_bounded_array_d, std::is_bounded_array (C++20) is_bounded_array_v; is_bounded_array_v; template <typename T> struct is_bounded_array : std::bool_constant<is_bounded_array_v<T>> { … }; /// is_instantiation_of_v /// is_instantiation_of /// instantiated_from /// uncvref_instantiated_from /// /// A trait variable and type to check if a given type is an instantiation of a /// class template. And corresponding concepts. /// /// Note that this only works with type template parameters. It does not work /// with non-type template parameters, template template parameters, or alias /// templates. is_instantiation_of_v; is_instantiation_of_v; template <template <typename...> class C, typename... T> struct is_instantiation_of : std::bool_constant<is_instantiation_of_v<C, T...>> { … }; #if defined(__cpp_concepts) template <typename T, template <typename...> class Templ> concept instantiated_from = is_instantiation_of_v<Templ, T>; template <typename T, template <typename...> class Templ> concept uncvref_instantiated_from = is_instantiation_of_v<Templ, std::remove_cvref_t<T>>; #endif /// member_pointer_traits /// /// For a member-pointer, reveals its constituent member-type and object-type. /// /// Works for both member-object-pointer and member-function-pointer. template <typename> struct member_pointer_traits; member_pointer_traits<M O::*>; namespace detail { struct is_constexpr_default_constructible_ { … }; } // namespace detail /// is_constexpr_default_constructible_v /// is_constexpr_default_constructible /// /// A trait variable and type which determines whether the type parameter is /// constexpr default-constructible, that is, default-constructible in a /// constexpr context. is_constexpr_default_constructible_v; template <typename T> struct is_constexpr_default_constructible : std::bool_constant<is_constexpr_default_constructible_v<T>> { … }; /*** * _t * * Instead of: * * using decayed = typename std::decay<T>::type; * * With the C++14 standard trait aliases, we could use: * * using decayed = std::decay_t<T>; * * Without them, we could use: * * using decayed = _t<std::decay<T>>; * * Also useful for any other library with template types having dependent * member types named `type`, like the standard trait types. */ _t; /** * A type trait to remove all const volatile and reference qualifiers on a * type T */ template <typename T> struct remove_cvref { … }; remove_cvref_t; namespace detail { template <typename Src> struct like_ { … }; like_<const Src>; like_<volatile Src>; like_<const volatile Src>; like_<Src &>; like_<Src &&>; } // namespace detail // mimic: like_t, p0847r0 like_t; // mimic: like, p0847r0 template <typename Src, typename Dst> struct like { … }; #if defined(__cpp_concepts) /** * Concept to check that a type is same as a given type, * when stripping qualifiers and refernces. * Especially useful for perfect forwarding of a specific type. * * Example: * * void foo(folly::uncvref_same_as<std::vector<int>> auto&& vec); * */ template <typename Ref, typename To> concept uncvref_same_as = std::is_same_v<std::remove_cvref_t<Ref>, To>; #endif /** * type_t * * A type alias for the first template type argument. `type_t` is useful for * controlling class-template and function-template partial specialization. * * Example: * * template <typename Value> * class Container { * public: * template <typename... Args> * Container( * type_t<in_place_t, decltype(Value(std::declval<Args>()...))>, * Args&&...); * }; * * void_t * * A type alias for `void`. `void_t` is useful for controlling class-template * and function-template partial specialization. * * Example: * * // has_value_type<T>::value is true if T has a nested type `value_type` * template <class T, class = void> * struct has_value_type * : std::false_type {}; * * template <class T> * struct has_value_type<T, folly::void_t<typename T::value_type>> * : std::true_type {}; */ /** * There is a bug in libstdc++, libc++, and MSVC's STL that causes it to * ignore unused template parameter arguments in template aliases and does not * cause substitution failures. This defect has been recorded here: * http://open-std.org/JTC1/SC22/WG21/docs/cwg_defects.html#1558. * * This causes the implementation of std::void_t to be buggy, as it is likely * defined as something like the following: * * template <typename...> * using void_t = void; * * This causes the compiler to ignore all the template arguments and does not * help when one wants to cause substitution failures. Rather declarations * which have void_t in orthogonal specializations are treated as the same. * For example, assuming the possible `T` types are only allowed to have * either the alias `one` or `two` and never both or none: * * template <typename T, * typename std::void_t<std::decay_t<T>::one>* = nullptr> * void foo(T&&) {} * template <typename T, * typename std::void_t<std::decay_t<T>::two>* = nullptr> * void foo(T&&) {} * * The second foo() will be a redefinition because it conflicts with the first * one; void_t does not cause substitution failures - the template types are * just ignored. */ namespace traits_detail { template <class T, class...> struct type_t_ { … }; } // namespace traits_detail type_t; void_t; /// nonesuch /// /// A tag type which traits may use to indicate lack of a result type. /// /// Similar to void in that no values of this type may be constructed. Different /// from void in that no functions may be defined with this return type and no /// complete expressions may evaluate with this expression type. /// /// mimic: std::experimental::nonesuch, Library Fundamentals TS v2 struct nonesuch { … }; namespace detail { template <typename Void, typename D, template <typename...> class, typename...> struct detected_ { … }; detected_<void_t<T<A...>>, D, T, A...>; } // namespace detail /// detected_or /// /// If T<A...> substitutes, has member type alias value_t as std::true_type /// and has member type alias type as T<A...>. Otherwise, has member type /// alias value_t as std::false_type and has member type alias type as D. /// /// mimic: std::experimental::detected_or, Library Fundamentals TS v2 /// /// Note: not resilient against incomplete types; may violate ODR. detected_or; /// detected_or_t /// /// A trait type alias which results in T<A...> if substitution would succeed /// and in D otherwise. /// /// Equivalent to detected_or<D, T, A...>::type. /// /// mimic: std::experimental::detected_or_t, Library Fundamentals TS v2 /// /// Note: not resilient against incomplete types; may violate ODR. detected_or_t; /// detected_t /// /// A trait type alias which results in T<A...> if substitution would succeed /// and in nonesuch otherwise. /// /// Equivalent to detected_or_t<nonesuch, T, A...>. /// /// mimic: std::experimental::detected_t, Library Fundamentals TS v2 /// /// Note: not resilient against incomplete types; may violate ODR. detected_t; // is_detected_v // is_detected // // A trait variable and type to test whether some metafunction from types to // types would succeed or fail in substitution over a given set of arguments. // // The trait variable is_detected_v<T, A...> is equivalent to // detected_or<nonesuch, T, A...>::value_t::value. // The trait type is_detected<T, A...> unambiguously inherits // std::bool_constant<V> where V is is_detected_v<T, A...>. // // mimic: std::experimental::is_detected, std::experimental::is_detected_v, // Library Fundamentals TS v2 // // Note: not resilient against incomplete types; may violate ODR. // // Note: the trait type is_detected differs here by being deferred. is_detected_v; template <template <typename...> class T, typename... A> struct is_detected : detected_or<nonesuch, T, A...>::value_t { … }; aligned_storage_for_t; // ---- namespace fallback { is_nothrow_convertible_v; template <typename From, typename To> struct is_nothrow_convertible : std::bool_constant<is_nothrow_convertible_v<From, To>> { … }; } // namespace fallback // is_nothrow_convertible // is_nothrow_convertible_v // // Import or backport: // * std::is_nothrow_convertible // * std::is_nothrow_convertible_v // // mimic: is_nothrow_convertible, C++20 #if defined(__cpp_lib_is_nothrow_convertible) && \ __cpp_lib_is_nothrow_convertible >= 201806L using std::is_nothrow_convertible; using std::is_nothrow_convertible_v; #else is_nothrow_convertible; is_nothrow_convertible_v; #endif /** * IsRelocatable<T>::value describes the ability of moving around * memory a value of type T by using memcpy (as opposed to the * conservative approach of calling the copy constructor and then * destroying the old temporary. Essentially for a relocatable type, * the following two sequences of code should be semantically * equivalent: * * void move1(T * from, T * to) { * new(to) T(from); * (*from).~T(); * } * * void move2(T * from, T * to) { * memcpy(to, from, sizeof(T)); * } * * Most C++ types are relocatable; the ones that aren't would include * internal pointers or (very rarely) would need to update remote * pointers to pointers tracking them. All C++ primitive types and * type constructors are relocatable. * * This property can be used in a variety of optimizations. Currently * fbvector uses this property intensively. * * The default conservatively assumes the type is not * relocatable. Several specializations are defined for known * types. You may want to add your own specializations. Do so in * namespace folly and make sure you keep the specialization of * IsRelocatable<SomeStruct> in the same header as SomeStruct. * * You may also declare a type to be relocatable by including * `typedef std::true_type IsRelocatable;` * in the class header. * * It may be unset in a base class by overriding the typedef to false_type. */ /* * IsZeroInitializable describes the property that value-initialization * is the same as memset(dst, 0, sizeof(T)). */ namespace traits_detail { #define FOLLY_HAS_TRUE_XXX … FOLLY_HAS_TRUE_XXX; FOLLY_HAS_TRUE_XXX; #undef FOLLY_HAS_TRUE_XXX } // namespace traits_detail struct Ignore { … }; Ignored; namespace traits_detail_IsEqualityComparable { Ignore operator==(Ignore, Ignore); template <class T, class U = T> struct IsEqualityComparable : std::is_convertible< decltype(std::declval<T>() == std::declval<U>()), bool> { … }; } // namespace traits_detail_IsEqualityComparable /* using override */ IsEqualityComparable; namespace traits_detail_IsLessThanComparable { Ignore operator<(Ignore, Ignore); template <class T, class U = T> struct IsLessThanComparable : std::is_convertible< decltype(std::declval<T>() < std::declval<U>()), bool> { … }; } // namespace traits_detail_IsLessThanComparable /* using override */ IsLessThanComparable; template <class T> struct IsRelocatable : std::conditional< !require_sizeof<T> || is_detected_v<traits_detail::detect_IsRelocatable, T>, traits_detail::has_true_IsRelocatable<T>, #if defined(__cpp_lib_is_trivially_relocatable) // P1144 std::is_trivially_relocatable<T> #else std::is_trivially_copyable<T> #endif >::type { … }; template <class T> struct IsZeroInitializable : std::conditional< !require_sizeof<T> || is_detected_v<traits_detail::detect_IsZeroInitializable, T>, traits_detail::has_true_IsZeroInitializable<T>, std::bool_constant< // !std::is_class<T>::value && // !std::is_union<T>::value && // !std::is_member_object_pointer<T>::value && // itanium true>>::type { … }; namespace detail { template <bool> struct conditional_; template <> struct conditional_<false> { … }; template <> struct conditional_<true> { … }; } // namespace detail /// conditional_t /// /// Like std::conditional_t but with only two total class template instances, /// rather than as many class template instances as there are uses. /// /// As one effect, the result can be used in deducible contexts, allowing /// deduction of conditional_t<V, T, F> to work when T or F is a template param. conditional_t; template <typename...> struct Conjunction : std::true_type { … }; Conjunction<T>; Conjunction<T, TList...>; template <typename...> struct Disjunction : std::false_type { … }; Disjunction<T>; Disjunction<T, TList...>; template <typename T> struct Negation : std::bool_constant<!T::value> { … }; template <bool... Bs> struct Bools { … }; // Lighter-weight than Conjunction, but evaluates all sub-conditions eagerly. template <class... Ts> struct StrictConjunction : std::is_same<Bools<Ts::value...>, Bools<(Ts::value || true)...>> { … }; template <class... Ts> struct StrictDisjunction : Negation< std::is_same<Bools<Ts::value...>, Bools<(Ts::value && false)...>>> { … }; namespace detail { is_transparent_; } // namespace detail /// is_transparent_v /// is_transparent /// /// A trait variable and type to test whether a less, equal-to, or hash type /// follows the is-transparent protocol used by containers with optional /// heterogeneous access. is_transparent_v; template <typename T> struct is_transparent : std::bool_constant<is_transparent_v<T>> { … }; namespace detail { is_allocator_; is_allocator_; } // namespace detail /// is_allocator_v /// is_allocator /// /// A trait variable and type to test whether a type is an allocator according /// to the minimum protocol required by std::allocator_traits. is_allocator_v; template <typename T> struct is_allocator : std::bool_constant<is_allocator_v<T>> { … }; } // namespace folly /** * Use this macro ONLY inside namespace folly. When using it with a * regular type, use it like this: * * // Make sure you're at namespace ::folly scope * template <> FOLLY_ASSUME_RELOCATABLE(MyType) * * When using it with a template type, use it like this: * * // Make sure you're at namespace ::folly scope * template <class T1, class T2> * FOLLY_ASSUME_RELOCATABLE(MyType<T1, T2>) */ #define FOLLY_ASSUME_RELOCATABLE(...) … /** * The FOLLY_ASSUME_FBVECTOR_COMPATIBLE* macros below encode the * assumption that the type is relocatable per IsRelocatable * above. Many types can be assumed to satisfy this condition, but * it is the responsibility of the user to state that assumption. * User-defined classes will not be optimized for use with * fbvector (see FBVector.h) unless they state that assumption. * * Use FOLLY_ASSUME_FBVECTOR_COMPATIBLE with regular types like this: * * FOLLY_ASSUME_FBVECTOR_COMPATIBLE(MyType) * * The versions FOLLY_ASSUME_FBVECTOR_COMPATIBLE_1, _2, _3, and _4 * allow using the macro for describing templatized classes with 1, 2, * 3, and 4 template parameters respectively. For template classes * just use the macro with the appropriate number and pass the name of * the template to it. Example: * * template <class T1, class T2> class MyType { ... }; * ... * // Make sure you're at global scope * FOLLY_ASSUME_FBVECTOR_COMPATIBLE_2(MyType) */ // Use this macro ONLY at global level (no namespace) #define FOLLY_ASSUME_FBVECTOR_COMPATIBLE(...) … // Use this macro ONLY at global level (no namespace) #define FOLLY_ASSUME_FBVECTOR_COMPATIBLE_1(...) … // Use this macro ONLY at global level (no namespace) #define FOLLY_ASSUME_FBVECTOR_COMPATIBLE_2(...) … // Use this macro ONLY at global level (no namespace) #define FOLLY_ASSUME_FBVECTOR_COMPATIBLE_3(...) … // Use this macro ONLY at global level (no namespace) #define FOLLY_ASSUME_FBVECTOR_COMPATIBLE_4(...) … namespace folly { // STL commonly-used types IsRelocatable<std::pair<T, U>>; // Is T one of T1, T2, ..., Tn? IsOneOf; /* * Complementary type traits for integral comparisons. * * For instance, `if(x < 0)` yields an error in clang for unsigned types * when -Werror is used due to -Wtautological-compare */ // same as `x < 0` template <typename T> constexpr bool is_negative(T x) { … } // same as `x <= 0` template <typename T> constexpr bool is_non_positive(T x) { … } // same as `x > 0` template <typename T> constexpr bool is_positive(T x) { … } // same as `x >= 0` template <typename T> constexpr bool is_non_negative(T x) { … } detail // namespace detail template <typename RHS, RHS rhs, typename LHS> bool less_than(LHS const lhs) { … } template <typename RHS, RHS rhs, typename LHS> bool greater_than(LHS const lhs) { … } } // namespace folly // Assume nothing when compiling with MSVC. #ifndef _MSC_VER FOLLY_ASSUME_FBVECTOR_COMPATIBLE_2(…) FOLLY_ASSUME_FBVECTOR_COMPATIBLE_1(…) #endif namespace folly { // Some compilers have signed __int128 and unsigned __int128 types, and some // libraries with some compilers have traits for those types. It's a mess. // Import things into folly and then fill in whatever is missing. // // The aliases: // int128_t // uint128_t // // The traits: // is_arithmetic // is_arithmetic_v // is_integral // is_integral_v // is_signed // is_signed_v // is_unsigned // is_unsigned_v // make_signed // make_signed_t // make_unsigned // make_unsigned_t template <typename T> struct is_arithmetic : std::is_arithmetic<T> { … }; is_arithmetic_v; template <typename T> struct is_integral : std::is_integral<T> { … }; is_integral_v; template <typename T> struct is_signed : std::is_signed<T> { … }; is_signed_v; template <typename T> struct is_unsigned : std::is_unsigned<T> { … }; is_unsigned_v; template <typename T> struct make_signed : std::make_signed<T> { … }; make_signed_t; template <typename T> struct make_unsigned : std::make_unsigned<T> { … }; make_unsigned_t; #if FOLLY_HAVE_INT128_T using int128_t = signed __int128; using uint128_t = unsigned __int128; template <> struct is_arithmetic<int128_t> : std::true_type {}; template <> struct is_arithmetic<uint128_t> : std::true_type {}; template <> struct is_integral<int128_t> : std::true_type {}; template <> struct is_integral<uint128_t> : std::true_type {}; template <> struct is_signed<int128_t> : std::true_type {}; template <> struct is_signed<uint128_t> : std::false_type {}; template <> struct is_unsigned<int128_t> : std::false_type {}; template <> struct is_unsigned<uint128_t> : std::true_type {}; template <> struct make_signed<int128_t> { using type = int128_t; }; template <> struct make_signed<uint128_t> { using type = int128_t; }; template <> struct make_unsigned<int128_t> { using type = uint128_t; }; template <> struct make_unsigned<uint128_t> { using type = uint128_t; }; #endif // FOLLY_HAVE_INT128_T namespace traits_detail { template <std::size_t> struct uint_bits_t_ { … }; template <> struct uint_bits_t_<8> : type_t_<std::uint8_t> { … }; template <> struct uint_bits_t_<16> : type_t_<std::uint16_t> { … }; template <> struct uint_bits_t_<32> : type_t_<std::uint32_t> { … }; template <> struct uint_bits_t_<64> : type_t_<std::uint64_t> { … }; #if FOLLY_HAVE_INT128_T template <> struct uint_bits_t_<128> : type_t_<uint128_t> {}; #endif // FOLLY_HAVE_INT128_T } // namespace traits_detail uint_bits_t; uint_bits_lg_t; int_bits_t; int_bits_lg_t; namespace traits_detail { template <std::size_t I, typename T> struct type_pack_element_indexed_type { … }; template <typename, typename...> struct type_pack_element_set; type_pack_element_set<std::index_sequence<I...>, T...>; type_pack_element_set_t; template <std::size_t I> struct type_pack_element_test { … }; type_pack_element_fallback; } // namespace traits_detail /// type_pack_element_t /// /// In the type pack Ts..., the Ith element. /// /// Wraps the builtin __type_pack_element where the builtin is available; where /// not, implemented directly. /// /// Under gcc, the builtin is available but does not mangle. Therefore, this /// trait must not be used anywhere it might be subject to mangling, such as in /// a return-type expression. #if FOLLY_HAS_BUILTIN(__type_pack_element) type_pack_element_t; #else template <std::size_t I, typename... Ts> using type_pack_element_t = traits_detail::type_pack_element_fallback<I, Ts...>; #endif /// type_pack_size_v /// /// The size of a type pack. /// /// A metafunction around sizeof...(Ts). type_pack_size_v; /// type_pack_size_t /// /// The size of a type pack. /// /// A metafunction around index_constant<sizeof...(Ts)>. type_pack_size_t; namespace traits_detail { template <std::size_t I, template <typename...> class List, typename... T> type_identity<type_pack_element_t<I, T...>> type_list_element_( List<T...> const*); template <template <typename...> class List, typename... T> index_constant<sizeof...(T)> type_list_size_(List<T...> const*); } // namespace traits_detail /// type_list_element_t /// /// In the type list List<T...>, where List has kind template <typename...> and /// T... is a type-pack, equivalent to type_pack_element_t<I, T...>. type_list_element_t; /// type_list_size_v /// /// The size of a type list. /// /// For List<T...>, equivalent to type_pack_size_v<T...>. type_list_size_v; /// type_list_size_t /// /// The size of a type list. /// /// For List<T...>, equivalent to type_pack_size_t<T...>. type_list_size_t; namespace traits_detail { template <decltype(auto) V> struct value_pack_constant { … }; } // namespace traits_detail /// value_pack_size_v /// /// The size of a value pack. /// /// A metafunction around sizeof...(V). value_pack_size_v; /// value_pack_size_t /// /// The size of a value pack. /// /// A metafunction around index_constant<sizeof...(V)>. value_pack_size_t; /// value_pack_element_type_t /// /// In the value pack V..., the type of the Ith element. value_pack_element_type_t; /// value_pack_element_type_t /// /// In the value pack V..., the Ith element. value_pack_element_v; namespace traits_detail { template <typename List> struct value_list_traits_; value_list_traits_<List<V...>>; } // namespace traits_detail /// value_list_size_v /// /// The size of a value list. /// /// For List<V...>, equivalent to value_pack_size_v<V...>. value_list_size_v; /// value_list_size_t /// /// The size of a value list. /// /// For List<V...>, equivalent to value_pack_size_t<V...>. value_list_size_t; /// value_list_element_type_t /// /// For List<V...>, the type of the Ith element. value_list_element_type_t; /// value_list_element_v /// /// For List<V...>, the Ith element. value_list_element_v; /** * Checks the requirements that the Hasher class must satisfy * in order to be used with the standard library containers, * for example `std::unordered_set<T, Hasher>`. */ is_hasher_usable; /** * Checks the requirements that the Hasher class must satisfy * in order to be used with the standard library containers, * for example `std::unordered_set<T, Hasher>`. */ is_hasher_usable_v; /** * Checks that the given hasher template's specialization for the given type * is usable with the standard library containters, * for example `std::unordered_set<T, Hasher<T>>`. */ is_hashable; /** * Checks that the given hasher template's specialization for the given type * is usable with the standard library containters, * for example `std::unordered_set<T, Hasher<T>>`. */ is_hashable_v; namespace detail { enable_hasher_helper_impl; } // namespace detail /** * A helper for defining partial specializations of a hasher class that rely * on other partial specializations of that hasher class being usable. * * Example: * ``` * template <typename T> * struct hash< * folly::enable_std_hash_helper<folly::Optional<T>, remove_const_t<T>>> { * size_t operator()(folly::Optional<T> const& obj) const { * return static_cast<bool>(obj) ? hash<remove_const_t<T>>()(*obj) : 0; * } * }; * ``` */ enable_hasher_helper; /** * A helper for defining partial specializations of a hasher class that rely * on other partial specializations of that hasher class being usable. * * Example: * ``` * template <typename T> * struct hash< * folly::enable_std_hash_helper<folly::Optional<T>, remove_const_t<T>>> { * size_t operator()(folly::Optional<T> const& obj) const { * return static_cast<bool>(obj) ? hash<remove_const_t<T>>()(*obj) : 0; * } * }; * ``` */ enable_std_hash_helper; } // namespace folly