//go:build windows
// +build windows
/*
Copyright 2017 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package winstats
import (
"os"
"runtime"
"strconv"
"strings"
"sync"
"syscall"
"time"
"unsafe"
cadvisorapi "github.com/google/cadvisor/info/v1"
"github.com/pkg/errors"
"golang.org/x/sys/windows"
"golang.org/x/sys/windows/registry"
"k8s.io/apimachinery/pkg/util/wait"
"k8s.io/klog/v2"
)
const (
bootIdRegistry = `SYSTEM\CurrentControlSet\Control\Session Manager\Memory Management\PrefetchParameters`
bootIdKey = `BootId`
)
// MemoryStatusEx is the same as Windows structure MEMORYSTATUSEX
// https://msdn.microsoft.com/en-us/library/windows/desktop/aa366770(v=vs.85).aspx
type MemoryStatusEx struct {
Length uint32
MemoryLoad uint32
TotalPhys uint64
AvailPhys uint64
TotalPageFile uint64
AvailPageFile uint64
TotalVirtual uint64
AvailVirtual uint64
AvailExtendedVirtual uint64
}
// PerformanceInfo is the same as Windows structure PERFORMANCE_INFORMATION
// https://learn.microsoft.com/en-us/windows/win32/api/psapi/ns-psapi-performance_information
type PerformanceInformation struct {
cb uint32
CommitTotalPages uint64
CommitLimitPages uint64
CommitPeakPages uint64
PhysicalTotalPages uint64
PhysicalAvailablePages uint64
SystemCachePages uint64
KernelTotalPages uint64
KernelPagesPages uint64
KernelNonpagedPages uint64
PageSize uint64
HandleCount uint32
ProcessCount uint32
ThreadCount uint32
}
var (
// kernel32.dll system calls
modkernel32 = windows.NewLazySystemDLL("kernel32.dll")
procGlobalMemoryStatusEx = modkernel32.NewProc("GlobalMemoryStatusEx")
procGetActiveProcessorCount = modkernel32.NewProc("GetActiveProcessorCount")
// psapi.dll system calls
modpsapi = windows.NewLazySystemDLL("psapi.dll")
procGetPerformanceInfo = modpsapi.NewProc("GetPerformanceInfo")
)
const allProcessorGroups = 0xFFFF
// NewPerfCounterClient creates a client using perf counters
func NewPerfCounterClient() (Client, error) {
// Initialize the cache
initCache := cpuUsageCoreNanoSecondsCache{0, 0}
return newClient(&perfCounterNodeStatsClient{
cpuUsageCoreNanoSecondsCache: initCache,
})
}
// perfCounterNodeStatsClient is a client that provides Windows Stats via PerfCounters
type perfCounterNodeStatsClient struct {
nodeMetrics
mu sync.RWMutex // mu protects nodeMetrics
nodeInfo
// cpuUsageCoreNanoSecondsCache caches the cpu usage for nodes.
cpuUsageCoreNanoSecondsCache
}
func (p *perfCounterNodeStatsClient) startMonitoring() error {
memory, err := getPhysicallyInstalledSystemMemoryBytes()
if err != nil {
return err
}
osInfo, err := GetOSInfo()
if err != nil {
return err
}
p.nodeInfo = nodeInfo{
kernelVersion: osInfo.GetPatchVersion(),
osImageVersion: osInfo.ProductName,
memoryPhysicalCapacityBytes: memory,
startTime: time.Now(),
}
cpuCounter, err := newPerfCounter(cpuQuery)
if err != nil {
return err
}
memWorkingSetCounter, err := newPerfCounter(memoryPrivWorkingSetQuery)
if err != nil {
return err
}
memCommittedBytesCounter, err := newPerfCounter(memoryCommittedBytesQuery)
if err != nil {
return err
}
networkAdapterCounter, err := newNetworkCounters()
if err != nil {
return err
}
go wait.Forever(func() {
p.collectMetricsData(cpuCounter, memWorkingSetCounter, memCommittedBytesCounter, networkAdapterCounter)
}, perfCounterUpdatePeriod)
// Cache the CPU usage every defaultCachePeriod
go wait.Forever(func() {
newValue := p.nodeMetrics.cpuUsageCoreNanoSeconds
p.mu.Lock()
defer p.mu.Unlock()
p.cpuUsageCoreNanoSecondsCache = cpuUsageCoreNanoSecondsCache{
previousValue: p.cpuUsageCoreNanoSecondsCache.latestValue,
latestValue: newValue,
}
}, defaultCachePeriod)
return nil
}
func (p *perfCounterNodeStatsClient) getMachineInfo() (*cadvisorapi.MachineInfo, error) {
hostname, err := os.Hostname()
if err != nil {
return nil, err
}
systemUUID, err := getSystemUUID()
if err != nil {
return nil, err
}
bootId, err := getBootID()
if err != nil {
return nil, err
}
return &cadvisorapi.MachineInfo{
NumCores: ProcessorCount(),
MemoryCapacity: p.nodeInfo.memoryPhysicalCapacityBytes,
MachineID: hostname,
SystemUUID: systemUUID,
BootID: bootId,
}, nil
}
// runtime.NumCPU() will only return the information for a single Processor Group.
// Since a single group can only hold 64 logical processors, this
// means when there are more they will be divided into multiple groups.
// For the above reason, procGetActiveProcessorCount is used to get the
// cpu count for all processor groups of the windows node.
// more notes for this issue:
// same issue in moby: https://github.com/moby/moby/issues/38935#issuecomment-744638345
// solution in hcsshim: https://github.com/microsoft/hcsshim/blob/master/internal/processorinfo/processor_count.go
func ProcessorCount() int {
if amount := getActiveProcessorCount(allProcessorGroups); amount != 0 {
return int(amount)
}
return runtime.NumCPU()
}
func getActiveProcessorCount(groupNumber uint16) int {
r0, _, _ := syscall.Syscall(procGetActiveProcessorCount.Addr(), 1, uintptr(groupNumber), 0, 0)
return int(r0)
}
func (p *perfCounterNodeStatsClient) getVersionInfo() (*cadvisorapi.VersionInfo, error) {
return &cadvisorapi.VersionInfo{
KernelVersion: p.nodeInfo.kernelVersion,
ContainerOsVersion: p.nodeInfo.osImageVersion,
}, nil
}
func (p *perfCounterNodeStatsClient) getNodeMetrics() (nodeMetrics, error) {
p.mu.RLock()
defer p.mu.RUnlock()
return p.nodeMetrics, nil
}
func (p *perfCounterNodeStatsClient) getNodeInfo() nodeInfo {
return p.nodeInfo
}
func (p *perfCounterNodeStatsClient) collectMetricsData(cpuCounter, memWorkingSetCounter, memCommittedBytesCounter perfCounter, networkAdapterCounter *networkCounter) {
cpuValue, err := cpuCounter.getData()
cpuCores := ProcessorCount()
if err != nil {
klog.ErrorS(err, "Unable to get cpu perf counter data")
return
}
memWorkingSetValue, err := memWorkingSetCounter.getData()
if err != nil {
klog.ErrorS(err, "Unable to get memWorkingSet perf counter data")
return
}
memCommittedBytesValue, err := memCommittedBytesCounter.getData()
if err != nil {
klog.ErrorS(err, "Unable to get memCommittedBytes perf counter data")
return
}
networkAdapterStats, err := networkAdapterCounter.getData()
if err != nil {
klog.ErrorS(err, "Unable to get network adapter perf counter data")
return
}
p.mu.Lock()
defer p.mu.Unlock()
p.nodeMetrics = nodeMetrics{
cpuUsageCoreNanoSeconds: p.convertCPUValue(cpuCores, cpuValue),
cpuUsageNanoCores: p.getCPUUsageNanoCores(),
memoryPrivWorkingSetBytes: memWorkingSetValue,
memoryCommittedBytes: memCommittedBytesValue,
interfaceStats: networkAdapterStats,
timeStamp: time.Now(),
}
}
func (p *perfCounterNodeStatsClient) convertCPUValue(cpuCores int, cpuValue uint64) uint64 {
// This converts perf counter data which is cpu percentage for all cores into nanoseconds.
// The formula is (cpuPercentage / 100.0) * #cores * 1e+9 (nano seconds). More info here:
// https://github.com/kubernetes/heapster/issues/650
newValue := p.nodeMetrics.cpuUsageCoreNanoSeconds + uint64((float64(cpuValue)/100.0)*float64(cpuCores)*1e9)
return newValue
}
func (p *perfCounterNodeStatsClient) getCPUUsageNanoCores() uint64 {
cachePeriodSeconds := uint64(defaultCachePeriod / time.Second)
perfCounterUpdatePeriodSeconds := uint64(perfCounterUpdatePeriod / time.Second)
cpuUsageNanoCores := ((p.cpuUsageCoreNanoSecondsCache.latestValue - p.cpuUsageCoreNanoSecondsCache.previousValue) * perfCounterUpdatePeriodSeconds) / cachePeriodSeconds
return cpuUsageNanoCores
}
func getSystemUUID() (string, error) {
k, err := registry.OpenKey(registry.LOCAL_MACHINE, `SYSTEM\HardwareConfig`, registry.QUERY_VALUE)
if err != nil {
return "", errors.Wrap(err, "failed to open registry key HKLM\\SYSTEM\\HardwareConfig")
}
defer k.Close()
uuid, _, err := k.GetStringValue("LastConfig")
if err != nil {
return "", errors.Wrap(err, "failed to read registry value LastConfig from key HKLM\\SYSTEM\\HardwareConfig")
}
uuid = strings.Trim(uuid, "{")
uuid = strings.Trim(uuid, "}")
uuid = strings.ToUpper(uuid)
return uuid, nil
}
func getPhysicallyInstalledSystemMemoryBytes() (uint64, error) {
// We use GlobalMemoryStatusEx instead of GetPhysicallyInstalledSystemMemory
// on Windows node for the following reasons:
// 1. GetPhysicallyInstalledSystemMemory retrieves the amount of physically
// installed RAM from the computer's SMBIOS firmware tables.
// https://msdn.microsoft.com/en-us/library/windows/desktop/cc300158(v=vs.85).aspx
// On some VM, it is unable to read data from SMBIOS and fails with ERROR_INVALID_DATA.
// 2. On Linux node, total physical memory is read from MemTotal in /proc/meminfo.
// GlobalMemoryStatusEx returns the amount of physical memory that is available
// for the operating system to use. The amount returned by GlobalMemoryStatusEx
// is closer in parity with Linux
// https://www.kernel.org/doc/Documentation/filesystems/proc.txt
var statex MemoryStatusEx
statex.Length = uint32(unsafe.Sizeof(statex))
ret, _, _ := procGlobalMemoryStatusEx.Call(uintptr(unsafe.Pointer(&statex)))
if ret == 0 {
return 0, errors.New("unable to read physical memory")
}
return statex.TotalPhys, nil
}
func GetPerformanceInfo() (*PerformanceInformation, error) {
var pi PerformanceInformation
pi.cb = uint32(unsafe.Sizeof(pi))
ret, _, _ := procGetPerformanceInfo.Call(uintptr(unsafe.Pointer(&pi)), uintptr(pi.cb))
if ret == 0 {
return nil, errors.New("unable to read Windows performance information")
}
return &pi, nil
}
func getBootID() (string, error) {
regKey, err := registry.OpenKey(registry.LOCAL_MACHINE, bootIdRegistry, registry.READ)
if err != nil {
return "", err
}
defer regKey.Close()
regValue, _, err := regKey.GetIntegerValue(bootIdKey)
if err != nil {
return "", err
}
return strconv.FormatUint(regValue, 10), nil
}