# Extensions
CEL extensions are a related set of constants, functions, macros, or other
features which may not be covered by the core CEL spec.
## Bindings
Returns a cel.EnvOption to configure support for local variable bindings
in expressions.
# Cel.Bind
Binds a simple identifier to an initialization expression which may be used
in a subsequenct result expression. Bindings may also be nested within each
other.
cel.bind(<varName>, <initExpr>, <resultExpr>)
Examples:
cel.bind(a, 'hello',
cel.bind(b, 'world', a + b + b + a)) // "helloworldworldhello"
// Avoid a list allocation within the exists comprehension.
cel.bind(valid_values, [a, b, c],
[d, e, f].exists(elem, elem in valid_values))
Local bindings are not guaranteed to be evaluated before use.
## Encoders
Encoding utilies for marshalling data into standardized representations.
### Base64.Decode
Decodes base64-encoded string to bytes.
This function will return an error if the string input is not
base64-encoded.
base64.decode(<string>) -> <bytes>
Examples:
base64.decode('aGVsbG8=') // return b'hello'
base64.decode('aGVsbG8') // error
### Base64.Encode
Encodes bytes to a base64-encoded string.
base64.encode(<bytes>) -> <string>
Example:
base64.encode(b'hello') // return 'aGVsbG8='
## Math
Math helper macros and functions.
Note, all macros use the 'math' namespace; however, at the time of macro
expansion the namespace looks just like any other identifier. If you are
currently using a variable named 'math', the macro will likely work just as
intended; however, there is some chance for collision.
### Math.Greatest
Returns the greatest valued number present in the arguments to the macro.
Greatest is a variable argument count macro which must take at least one
argument. Simple numeric and list literals are supported as valid argument
types; however, other literals will be flagged as errors during macro
expansion. If the argument expression does not resolve to a numeric or
list(numeric) type during type-checking, or during runtime then an error
will be produced. If a list argument is empty, this too will produce an
error.
math.greatest(<arg>, ...) -> <double|int|uint>
Examples:
math.greatest(1) // 1
math.greatest(1u, 2u) // 2u
math.greatest(-42.0, -21.5, -100.0) // -21.5
math.greatest([-42.0, -21.5, -100.0]) // -21.5
math.greatest(numbers) // numbers must be list(numeric)
math.greatest() // parse error
math.greatest('string') // parse error
math.greatest(a, b) // check-time error if a or b is non-numeric
math.greatest(dyn('string')) // runtime error
### Math.Least
Returns the least valued number present in the arguments to the macro.
Least is a variable argument count macro which must take at least one
argument. Simple numeric and list literals are supported as valid argument
types; however, other literals will be flagged as errors during macro
expansion. If the argument expression does not resolve to a numeric or
list(numeric) type during type-checking, or during runtime then an error
will be produced. If a list argument is empty, this too will produce an
error.
math.least(<arg>, ...) -> <double|int|uint>
Examples:
math.least(1) // 1
math.least(1u, 2u) // 1u
math.least(-42.0, -21.5, -100.0) // -100.0
math.least([-42.0, -21.5, -100.0]) // -100.0
math.least(numbers) // numbers must be list(numeric)
math.least() // parse error
math.least('string') // parse error
math.least(a, b) // check-time error if a or b is non-numeric
math.least(dyn('string')) // runtime error
### Math.BitOr
Introduced at version: 1
Performs a bitwise-OR operation over two int or uint values.
math.bitOr(<int>, <int>) -> <int>
math.bitOr(<uint>, <uint>) -> <uint>
Examples:
math.bitOr(1u, 2u) // returns 3u
math.bitOr(-2, -4) // returns -2
### Math.BitAnd
Introduced at version: 1
Performs a bitwise-AND operation over two int or uint values.
math.bitAnd(<int>, <int>) -> <int>
math.bitAnd(<uint>, <uint>) -> <uint>
Examples:
math.bitAnd(3u, 2u) // return 2u
math.bitAnd(3, 5) // returns 3
math.bitAnd(-3, -5) // returns -7
### Math.BitXor
Introduced at version: 1
math.bitXor(<int>, <int>) -> <int>
math.bitXor(<uint>, <uint>) -> <uint>
Performs a bitwise-XOR operation over two int or uint values.
Examples:
math.bitXor(3u, 5u) // returns 6u
math.bitXor(1, 3) // returns 2
### Math.BitNot
Introduced at version: 1
Function which accepts a single int or uint and performs a bitwise-NOT
ones-complement of the given binary value.
math.bitNot(<int>) -> <int>
math.bitNot(<uint>) -> <uint>
Examples
math.bitNot(1) // returns -1
math.bitNot(-1) // return 0
math.bitNot(0u) // returns 18446744073709551615u
### Math.BitShiftLeft
Introduced at version: 1
Perform a left shift of bits on the first parameter, by the amount of bits
specified in the second parameter. The first parameter is either a uint or
an int. The second parameter must be an int.
When the second parameter is 64 or greater, 0 will be always be returned
since the number of bits shifted is greater than or equal to the total bit
length of the number being shifted. Negative valued bit shifts will result
in a runtime error.
math.bitShiftLeft(<int>, <int>) -> <int>
math.bitShiftLeft(<uint>, <int>) -> <uint>
Examples
math.bitShiftLeft(1, 2) // returns 4
math.bitShiftLeft(-1, 2) // returns -4
math.bitShiftLeft(1u, 2) // return 4u
math.bitShiftLeft(1u, 200) // returns 0u
### Math.BitShiftRight
Introduced at version: 1
Perform a right shift of bits on the first parameter, by the amount of bits
specified in the second parameter. The first parameter is either a uint or
an int. The second parameter must be an int.
When the second parameter is 64 or greater, 0 will always be returned since
the number of bits shifted is greater than or equal to the total bit length
of the number being shifted. Negative valued bit shifts will result in a
runtime error.
The sign bit extension will not be preserved for this operation: vacant bits
on the left are filled with 0.
math.bitShiftRight(<int>, <int>) -> <int>
math.bitShiftRight(<uint>, <int>) -> <uint>
Examples
math.bitShiftRight(1024, 2) // returns 256
math.bitShiftRight(1024u, 2) // returns 256u
math.bitShiftRight(1024u, 64) // returns 0u
### Math.Ceil
Introduced at version: 1
Compute the ceiling of a double value.
math.ceil(<double>) -> <double>
Examples:
math.ceil(1.2) // returns 2.0
math.ceil(-1.2) // returns -1.0
### Math.Floor
Introduced at version: 1
Compute the floor of a double value.
math.floor(<double>) -> <double>
Examples:
math.floor(1.2) // returns 1.0
math.floor(-1.2) // returns -2.0
### Math.Round
Introduced at version: 1
Rounds the double value to the nearest whole number with ties rounding away
from zero, e.g. 1.5 -> 2.0, -1.5 -> -2.0.
math.round(<double>) -> <double>
Examples:
math.round(1.2) // returns 1.0
math.round(1.5) // returns 2.0
math.round(-1.5) // returns -2.0
### Math.Trunc
Introduced at version: 1
Truncates the fractional portion of the double value.
math.trunc(<double>) -> <double>
Examples:
math.trunc(-1.3) // returns -1.0
math.trunc(1.3) // returns 1.0
### Math.Abs
Introduced at version: 1
Returns the absolute value of the numeric type provided as input. If the
value is NaN, the output is NaN. If the input is int64 min, the function
will result in an overflow error.
math.abs(<double>) -> <double>
math.abs(<int>) -> <int>
math.abs(<uint>) -> <uint>
Examples:
math.abs(-1) // returns 1
math.abs(1) // returns 1
math.abs(-9223372036854775808) // overlflow error
### Math.Sign
Introduced at version: 1
Returns the sign of the numeric type, either -1, 0, 1 as an int, double, or
uint depending on the overload. For floating point values, if NaN is
provided as input, the output is also NaN. The implementation does not
differentiate between positive and negative zero.
math.sign(<double>) -> <double>
math.sign(<int>) -> <int>
math.sign(<uint>) -> <uint>
Examples:
math.sign(-42) // returns -1
math.sign(0) // returns 0
math.sign(42) // returns 1
### Math.IsInf
Introduced at version: 1
Returns true if the input double value is -Inf or +Inf.
math.isInf(<double>) -> <bool>
Examples:
math.isInf(1.0/0.0) // returns true
math.isInf(1.2) // returns false
### Math.IsNaN
Introduced at version: 1
Returns true if the input double value is NaN, false otherwise.
math.isNaN(<double>) -> <bool>
Examples:
math.isNaN(0.0/0.0) // returns true
math.isNaN(1.2) // returns false
### Math.IsFinite
Introduced at version: 1
Returns true if the value is a finite number. Equivalent in behavior to:
!math.isNaN(double) && !math.isInf(double)
math.isFinite(<double>) -> <bool>
Examples:
math.isFinite(0.0/0.0) // returns false
math.isFinite(1.2) // returns true
## Protos
Protos configure extended macros and functions for proto manipulation.
Note, all macros use the 'proto' namespace; however, at the time of macro
expansion the namespace looks just like any other identifier. If you are
currently using a variable named 'proto', the macro will likely work just as
you intend; however, there is some chance for collision.
### Protos.GetExt
Macro which generates a select expression that retrieves an extension field
from the input proto2 syntax message. If the field is not set, the default
value forthe extension field is returned according to safe-traversal semantics.
proto.getExt(<msg>, <fully.qualified.extension.name>) -> <field-type>
Example:
proto.getExt(msg, google.expr.proto2.test.int32_ext) // returns int value
### Protos.HasExt
Macro which generates a test-only select expression that determines whether
an extension field is set on a proto2 syntax message.
proto.hasExt(<msg>, <fully.qualified.extension.name>) -> <bool>
Example:
proto.hasExt(msg, google.expr.proto2.test.int32_ext) // returns true || false
## Lists
Extended functions for list manipulation. As a general note, all indices are
zero-based.
### Slice
Returns a new sub-list using the indexes provided.
<list>.slice(<int>, <int>) -> <list>
Examples:
[1,2,3,4].slice(1, 3) // return [2, 3]
[1,2,3,4].slice(2, 4) // return [3 ,4]
## Sets
Sets provides set relationship tests.
There is no set type within CEL, and while one may be introduced in the
future, there are cases where a `list` type is known to behave like a set.
For such cases, this library provides some basic functionality for
determining set containment, equivalence, and intersection.
### Sets.Contains
Returns whether the first list argument contains all elements in the second
list argument. The list may contain elements of any type and standard CEL
equality is used to determine whether a value exists in both lists. If the
second list is empty, the result will always return true.
sets.contains(list(T), list(T)) -> bool
Examples:
sets.contains([], []) // true
sets.contains([], [1]) // false
sets.contains([1, 2, 3, 4], [2, 3]) // true
sets.contains([1, 2.0, 3u], [1.0, 2u, 3]) // true
### Sets.Equivalent
Returns whether the first and second list are set equivalent. Lists are set
equivalent if for every item in the first list, there is an element in the
second which is equal. The lists may not be of the same size as they do not
guarantee the elements within them are unique, so size does not factor into
the computation.
sets.equivalent(list(T), list(T)) -> bool
Examples:
sets.equivalent([], []) // true
sets.equivalent([1], [1, 1]) // true
sets.equivalent([1], [1u, 1.0]) // true
sets.equivalent([1, 2, 3], [3u, 2.0, 1]) // true
### Sets.Intersects
Returns whether the first list has at least one element whose value is equal
to an element in the second list. If either list is empty, the result will
be false.
sets.intersects(list(T), list(T)) -> bool
Examples:
sets.intersects([1], []) // false
sets.intersects([1], [1, 2]) // true
sets.intersects([[1], [2, 3]], [[1, 2], [2, 3.0]]) // true
## Strings
Extended functions for string manipulation. As a general note, all indices are
zero-based.
### CharAt
Returns the character at the given position. If the position is negative, or
greater than the length of the string, the function will produce an error:
<string>.charAt(<int>) -> <string>
Examples:
'hello'.charAt(4) // return 'o'
'hello'.charAt(5) // return ''
'hello'.charAt(-1) // error
### IndexOf
Returns the integer index of the first occurrence of the search string. If the
search string is not found the function returns -1.
The function also accepts an optional position from which to begin the
substring search. If the substring is the empty string, the index where the
search starts is returned (zero or custom).
<string>.indexOf(<string>) -> <int>
<string>.indexOf(<string>, <int>) -> <int>
Examples:
'hello mellow'.indexOf('') // returns 0
'hello mellow'.indexOf('ello') // returns 1
'hello mellow'.indexOf('jello') // returns -1
'hello mellow'.indexOf('', 2) // returns 2
'hello mellow'.indexOf('ello', 2) // returns 7
'hello mellow'.indexOf('ello', 20) // error
### Join
Returns a new string where the elements of string list are concatenated.
The function also accepts an optional separator which is placed between
elements in the resulting string.
<list<string>>.join() -> <string>
<list<string>>.join(<string>) -> <string>
Examples:
['hello', 'mellow'].join() // returns 'hellomellow'
['hello', 'mellow'].join(' ') // returns 'hello mellow'
[].join() // returns ''
[].join('/') // returns ''
### LastIndexOf
Returns the integer index of the last occurrence of the search string. If the
search string is not found the function returns -1.
The function also accepts an optional position which represents the last index
to be considered as the beginning of the substring match. If the substring is
the empty string, the index where the search starts is returned (string length
or custom).
<string>.lastIndexOf(<string>) -> <int>
<string>.lastIndexOf(<string>, <int>) -> <int>
Examples:
'hello mellow'.lastIndexOf('') // returns 12
'hello mellow'.lastIndexOf('ello') // returns 7
'hello mellow'.lastIndexOf('jello') // returns -1
'hello mellow'.lastIndexOf('ello', 6) // returns 1
'hello mellow'.lastIndexOf('ello', -1) // error
### LowerAscii
Returns a new string where all ASCII characters are lower-cased.
This function does not perform Unicode case-mapping for characters outside the
ASCII range.
<string>.lowerAscii() -> <string>
Examples:
'TacoCat'.lowerAscii() // returns 'tacocat'
'TacoCÆt Xii'.lowerAscii() // returns 'tacocÆt xii'
### Quote
**Introduced in version 1**
Takes the given string and makes it safe to print (without any formatting due to escape sequences).
If any invalid UTF-8 characters are encountered, they are replaced with \uFFFD.
strings.quote(<string>)
Examples:
strings.quote('single-quote with "double quote"') // returns '"single-quote with \"double quote\""'
strings.quote("two escape sequences \a\n") // returns '"two escape sequences \\a\\n"'
### Replace
Returns a new string based on the target, which replaces the occurrences of a
search string with a replacement string if present. The function accepts an
optional limit on the number of substring replacements to be made.
When the replacement limit is 0, the result is the original string. When the
limit is a negative number, the function behaves the same as replace all.
<string>.replace(<string>, <string>) -> <string>
<string>.replace(<string>, <string>, <int>) -> <string>
Examples:
'hello hello'.replace('he', 'we') // returns 'wello wello'
'hello hello'.replace('he', 'we', -1) // returns 'wello wello'
'hello hello'.replace('he', 'we', 1) // returns 'wello hello'
'hello hello'.replace('he', 'we', 0) // returns 'hello hello'
### Split
Returns a list of strings split from the input by the given separator. The
function accepts an optional argument specifying a limit on the number of
substrings produced by the split.
When the split limit is 0, the result is an empty list. When the limit is 1,
the result is the target string to split. When the limit is a negative
number, the function behaves the same as split all.
<string>.split(<string>) -> <list<string>>
<string>.split(<string>, <int>) -> <list<string>>
Examples:
'hello hello hello'.split(' ') // returns ['hello', 'hello', 'hello']
'hello hello hello'.split(' ', 0) // returns []
'hello hello hello'.split(' ', 1) // returns ['hello hello hello']
'hello hello hello'.split(' ', 2) // returns ['hello', 'hello hello']
'hello hello hello'.split(' ', -1) // returns ['hello', 'hello', 'hello']
### Substring
Returns the substring given a numeric range corresponding to character
positions. Optionally may omit the trailing range for a substring from a given
character position until the end of a string.
Character offsets are 0-based with an inclusive start range and exclusive end
range. It is an error to specify an end range that is lower than the start
range, or for either the start or end index to be negative or exceed the string
length.
<string>.substring(<int>) -> <string>
<string>.substring(<int>, <int>) -> <string>
Examples:
'tacocat'.substring(4) // returns 'cat'
'tacocat'.substring(0, 4) // returns 'taco'
'tacocat'.substring(-1) // error
'tacocat'.substring(2, 1) // error
### Trim
Returns a new string which removes the leading and trailing whitespace in the
target string. The trim function uses the Unicode definition of whitespace
which does not include the zero-width spaces. See:
https://en.wikipedia.org/wiki/Whitespace_character#Unicode
<string>.trim() -> <string>
Examples:
' \ttrim\n '.trim() // returns 'trim'
### UpperAscii
Returns a new string where all ASCII characters are upper-cased.
This function does not perform Unicode case-mapping for characters outside the
ASCII range.
<string>.upperAscii() -> <string>
Examples:
'TacoCat'.upperAscii() // returns 'TACOCAT'
'TacoCÆt Xii'.upperAscii() // returns 'TACOCÆT XII'
### Reverse
Returns a new string whose characters are the same as the target string, only formatted in
reverse order.
This function relies on converting strings to rune arrays in order to reverse.
It can be located in Version 3 of strings.
<string>.reverse() -> <string>
Examples:
'gums'.reverse() // returns 'smug'
'John Smith'.reverse() // returns 'htimS nhoJ'