package libcontainer
import (
"errors"
"fmt"
"os"
"os/exec"
"strconv"
"github.com/opencontainers/runtime-spec/specs-go"
"github.com/opencontainers/selinux/go-selinux"
"github.com/sirupsen/logrus"
"golang.org/x/sys/unix"
"github.com/opencontainers/runc/libcontainer/apparmor"
"github.com/opencontainers/runc/libcontainer/configs"
"github.com/opencontainers/runc/libcontainer/keys"
"github.com/opencontainers/runc/libcontainer/seccomp"
"github.com/opencontainers/runc/libcontainer/system"
"github.com/opencontainers/runc/libcontainer/utils"
)
type linuxStandardInit struct {
pipe *os.File
consoleSocket *os.File
parentPid int
fifoFd int
logFd int
mountFds []int
config *initConfig
}
func (l *linuxStandardInit) getSessionRingParams() (string, uint32, uint32) {
var newperms uint32
if l.config.Config.Namespaces.Contains(configs.NEWUSER) {
// With user ns we need 'other' search permissions.
newperms = 0x8
} else {
// Without user ns we need 'UID' search permissions.
newperms = 0x80000
}
// Create a unique per session container name that we can join in setns;
// However, other containers can also join it.
return "_ses." + l.config.ContainerId, 0xffffffff, newperms
}
func (l *linuxStandardInit) Init() error {
if !l.config.Config.NoNewKeyring {
if err := selinux.SetKeyLabel(l.config.ProcessLabel); err != nil {
return err
}
defer selinux.SetKeyLabel("") //nolint: errcheck
ringname, keepperms, newperms := l.getSessionRingParams()
// Do not inherit the parent's session keyring.
if sessKeyId, err := keys.JoinSessionKeyring(ringname); err != nil {
// If keyrings aren't supported then it is likely we are on an
// older kernel (or inside an LXC container). While we could bail,
// the security feature we are using here is best-effort (it only
// really provides marginal protection since VFS credentials are
// the only significant protection of keyrings).
//
// TODO(cyphar): Log this so people know what's going on, once we
// have proper logging in 'runc init'.
if !errors.Is(err, unix.ENOSYS) {
return fmt.Errorf("unable to join session keyring: %w", err)
}
} else {
// Make session keyring searchable. If we've gotten this far we
// bail on any error -- we don't want to have a keyring with bad
// permissions.
if err := keys.ModKeyringPerm(sessKeyId, keepperms, newperms); err != nil {
return fmt.Errorf("unable to mod keyring permissions: %w", err)
}
}
}
if err := setupNetwork(l.config); err != nil {
return err
}
if err := setupRoute(l.config.Config); err != nil {
return err
}
// initialises the labeling system
selinux.GetEnabled()
// We don't need the mountFds after prepareRootfs() nor if it fails.
err := prepareRootfs(l.pipe, l.config, l.mountFds)
for _, m := range l.mountFds {
if m == -1 {
continue
}
if err := unix.Close(m); err != nil {
return fmt.Errorf("Unable to close mountFds fds: %w", err)
}
}
if err != nil {
return err
}
// Set up the console. This has to be done *before* we finalize the rootfs,
// but *after* we've given the user the chance to set up all of the mounts
// they wanted.
if l.config.CreateConsole {
if err := setupConsole(l.consoleSocket, l.config, true); err != nil {
return err
}
if err := system.Setctty(); err != nil {
return &os.SyscallError{Syscall: "ioctl(setctty)", Err: err}
}
}
// Finish the rootfs setup.
if l.config.Config.Namespaces.Contains(configs.NEWNS) {
if err := finalizeRootfs(l.config.Config); err != nil {
return err
}
}
if hostname := l.config.Config.Hostname; hostname != "" {
if err := unix.Sethostname([]byte(hostname)); err != nil {
return &os.SyscallError{Syscall: "sethostname", Err: err}
}
}
if err := apparmor.ApplyProfile(l.config.AppArmorProfile); err != nil {
return fmt.Errorf("unable to apply apparmor profile: %w", err)
}
for key, value := range l.config.Config.Sysctl {
if err := writeSystemProperty(key, value); err != nil {
return err
}
}
for _, path := range l.config.Config.ReadonlyPaths {
if err := readonlyPath(path); err != nil {
return fmt.Errorf("can't make %q read-only: %w", path, err)
}
}
for _, path := range l.config.Config.MaskPaths {
if err := maskPath(path, l.config.Config.MountLabel); err != nil {
return fmt.Errorf("can't mask path %s: %w", path, err)
}
}
pdeath, err := system.GetParentDeathSignal()
if err != nil {
return fmt.Errorf("can't get pdeath signal: %w", err)
}
if l.config.NoNewPrivileges {
if err := unix.Prctl(unix.PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); err != nil {
return &os.SyscallError{Syscall: "prctl(SET_NO_NEW_PRIVS)", Err: err}
}
}
// Tell our parent that we're ready to exec. This must be done before the
// Seccomp rules have been applied, because we need to be able to read and
// write to a socket.
if err := syncParentReady(l.pipe); err != nil {
return fmt.Errorf("sync ready: %w", err)
}
if err := selinux.SetExecLabel(l.config.ProcessLabel); err != nil {
return fmt.Errorf("can't set process label: %w", err)
}
defer selinux.SetExecLabel("") //nolint: errcheck
// Without NoNewPrivileges seccomp is a privileged operation, so we need to
// do this before dropping capabilities; otherwise do it as late as possible
// just before execve so as few syscalls take place after it as possible.
if l.config.Config.Seccomp != nil && !l.config.NoNewPrivileges {
seccompFd, err := seccomp.InitSeccomp(l.config.Config.Seccomp)
if err != nil {
return err
}
if err := syncParentSeccomp(l.pipe, seccompFd); err != nil {
return err
}
}
if err := finalizeNamespace(l.config); err != nil {
return err
}
// finalizeNamespace can change user/group which clears the parent death
// signal, so we restore it here.
if err := pdeath.Restore(); err != nil {
return fmt.Errorf("can't restore pdeath signal: %w", err)
}
// Compare the parent from the initial start of the init process and make
// sure that it did not change. if the parent changes that means it died
// and we were reparented to something else so we should just kill ourself
// and not cause problems for someone else.
if unix.Getppid() != l.parentPid {
return unix.Kill(unix.Getpid(), unix.SIGKILL)
}
// Check for the arg before waiting to make sure it exists and it is
// returned as a create time error.
name, err := exec.LookPath(l.config.Args[0])
if err != nil {
return err
}
// exec.LookPath in Go < 1.20 might return no error for an executable
// residing on a file system mounted with noexec flag, so perform this
// extra check now while we can still return a proper error.
// TODO: remove this once go < 1.20 is not supported.
if err := eaccess(name); err != nil {
return &os.PathError{Op: "eaccess", Path: name, Err: err}
}
// Set seccomp as close to execve as possible, so as few syscalls take
// place afterward (reducing the amount of syscalls that users need to
// enable in their seccomp profiles). However, this needs to be done
// before closing the pipe since we need it to pass the seccompFd to
// the parent.
if l.config.Config.Seccomp != nil && l.config.NoNewPrivileges {
seccompFd, err := seccomp.InitSeccomp(l.config.Config.Seccomp)
if err != nil {
return fmt.Errorf("unable to init seccomp: %w", err)
}
if err := syncParentSeccomp(l.pipe, seccompFd); err != nil {
return err
}
}
// Close the pipe to signal that we have completed our init.
logrus.Debugf("init: closing the pipe to signal completion")
_ = l.pipe.Close()
// Close the log pipe fd so the parent's ForwardLogs can exit.
if err := unix.Close(l.logFd); err != nil {
return &os.PathError{Op: "close log pipe", Path: "fd " + strconv.Itoa(l.logFd), Err: err}
}
// Wait for the FIFO to be opened on the other side before exec-ing the
// user process. We open it through /proc/self/fd/$fd, because the fd that
// was given to us was an O_PATH fd to the fifo itself. Linux allows us to
// re-open an O_PATH fd through /proc.
fifoPath := "/proc/self/fd/" + strconv.Itoa(l.fifoFd)
fd, err := unix.Open(fifoPath, unix.O_WRONLY|unix.O_CLOEXEC, 0)
if err != nil {
return &os.PathError{Op: "open exec fifo", Path: fifoPath, Err: err}
}
if _, err := unix.Write(fd, []byte("0")); err != nil {
return &os.PathError{Op: "write exec fifo", Path: fifoPath, Err: err}
}
// Close the O_PATH fifofd fd before exec because the kernel resets
// dumpable in the wrong order. This has been fixed in newer kernels, but
// we keep this to ensure CVE-2016-9962 doesn't re-emerge on older kernels.
// N.B. the core issue itself (passing dirfds to the host filesystem) has
// since been resolved.
// https://github.com/torvalds/linux/blob/v4.9/fs/exec.c#L1290-L1318
_ = unix.Close(l.fifoFd)
s := l.config.SpecState
s.Pid = unix.Getpid()
s.Status = specs.StateCreated
if err := l.config.Config.Hooks[configs.StartContainer].RunHooks(s); err != nil {
return err
}
// Close all file descriptors we are not passing to the container. This is
// necessary because the execve target could use internal runc fds as the
// execve path, potentially giving access to binary files from the host
// (which can then be opened by container processes, leading to container
// escapes). Note that because this operation will close any open file
// descriptors that are referenced by (*os.File) handles from underneath
// the Go runtime, we must not do any file operations after this point
// (otherwise the (*os.File) finaliser could close the wrong file). See
// CVE-2024-21626 for more information as to why this protection is
// necessary.
//
// This is not needed for runc-dmz, because the extra execve(2) step means
// that all O_CLOEXEC file descriptors have already been closed and thus
// the second execve(2) from runc-dmz cannot access internal file
// descriptors from runc.
if err := utils.UnsafeCloseFrom(l.config.PassedFilesCount + 3); err != nil {
return err
}
return system.Exec(name, l.config.Args[0:], os.Environ())
}