func min(a, b int) int { … } func max(a, b int) int { … } func calculateRatio(matches, length int) float64 { … } type Match … type OpCode … type SequenceMatcher … func NewMatcher(a, b []string) *SequenceMatcher { … } func NewMatcherWithJunk(a, b []string, autoJunk bool, isJunk func(string) bool, ) *SequenceMatcher { … } // Set two sequences to be compared. func (m *SequenceMatcher) SetSeqs(a, b []string) { … } // Set the first sequence to be compared. The second sequence to be compared is // not changed. // // SequenceMatcher computes and caches detailed information about the second // sequence, so if you want to compare one sequence S against many sequences, // use .SetSeq2(s) once and call .SetSeq1(x) repeatedly for each of the other // sequences. // // See also SetSeqs() and SetSeq2(). func (m *SequenceMatcher) SetSeq1(a []string) { … } // Set the second sequence to be compared. The first sequence to be compared is // not changed. func (m *SequenceMatcher) SetSeq2(b []string) { … } func (m *SequenceMatcher) chainB() { … } func (m *SequenceMatcher) isBJunk(s string) bool { … } // Find longest matching block in a[alo:ahi] and b[blo:bhi]. // // If IsJunk is not defined: // // Return (i,j,k) such that a[i:i+k] is equal to b[j:j+k], where // // alo <= i <= i+k <= ahi // blo <= j <= j+k <= bhi // // and for all (i',j',k') meeting those conditions, // // k >= k' // i <= i' // and if i == i', j <= j' // // In other words, of all maximal matching blocks, return one that // starts earliest in a, and of all those maximal matching blocks that // start earliest in a, return the one that starts earliest in b. // // If IsJunk is defined, first the longest matching block is // determined as above, but with the additional restriction that no // junk element appears in the block. Then that block is extended as // far as possible by matching (only) junk elements on both sides. So // the resulting block never matches on junk except as identical junk // happens to be adjacent to an "interesting" match. // // If no blocks match, return (alo, blo, 0). func (m *SequenceMatcher) findLongestMatch(alo, ahi, blo, bhi int) Match { … } // Return list of triples describing matching subsequences. // // Each triple is of the form (i, j, n), and means that // a[i:i+n] == b[j:j+n]. The triples are monotonically increasing in // i and in j. It's also guaranteed that if (i, j, n) and (i', j', n') are // adjacent triples in the list, and the second is not the last triple in the // list, then i+n != i' or j+n != j'. IOW, adjacent triples never describe // adjacent equal blocks. // // The last triple is a dummy, (len(a), len(b), 0), and is the only // triple with n==0. func (m *SequenceMatcher) GetMatchingBlocks() []Match { … } // Return list of 5-tuples describing how to turn a into b. // // Each tuple is of the form (tag, i1, i2, j1, j2). The first tuple // has i1 == j1 == 0, and remaining tuples have i1 == the i2 from the // tuple preceding it, and likewise for j1 == the previous j2. // // The tags are characters, with these meanings: // // 'r' (replace): a[i1:i2] should be replaced by b[j1:j2] // // 'd' (delete): a[i1:i2] should be deleted, j1==j2 in this case. // // 'i' (insert): b[j1:j2] should be inserted at a[i1:i1], i1==i2 in this case. // // 'e' (equal): a[i1:i2] == b[j1:j2] func (m *SequenceMatcher) GetOpCodes() []OpCode { … } // Isolate change clusters by eliminating ranges with no changes. // // Return a generator of groups with up to n lines of context. // Each group is in the same format as returned by GetOpCodes(). func (m *SequenceMatcher) GetGroupedOpCodes(n int) [][]OpCode { … } // Return a measure of the sequences' similarity (float in [0,1]). // // Where T is the total number of elements in both sequences, and // M is the number of matches, this is 2.0*M / T. // Note that this is 1 if the sequences are identical, and 0 if // they have nothing in common. // // .Ratio() is expensive to compute if you haven't already computed // .GetMatchingBlocks() or .GetOpCodes(), in which case you may // want to try .QuickRatio() or .RealQuickRation() first to get an // upper bound. func (m *SequenceMatcher) Ratio() float64 { … } // Return an upper bound on ratio() relatively quickly. // // This isn't defined beyond that it is an upper bound on .Ratio(), and // is faster to compute. func (m *SequenceMatcher) QuickRatio() float64 { … } // Return an upper bound on ratio() very quickly. // // This isn't defined beyond that it is an upper bound on .Ratio(), and // is faster to compute than either .Ratio() or .QuickRatio(). func (m *SequenceMatcher) RealQuickRatio() float64 { … } // Convert range to the "ed" format func formatRangeUnified(start, stop int) string { … } type UnifiedDiff … // Compare two sequences of lines; generate the delta as a unified diff. // // Unified diffs are a compact way of showing line changes and a few // lines of context. The number of context lines is set by 'n' which // defaults to three. // // By default, the diff control lines (those with ---, +++, or @@) are // created with a trailing newline. This is helpful so that inputs // created from file.readlines() result in diffs that are suitable for // file.writelines() since both the inputs and outputs have trailing // newlines. // // For inputs that do not have trailing newlines, set the lineterm // argument to "" so that the output will be uniformly newline free. // // The unidiff format normally has a header for filenames and modification // times. Any or all of these may be specified using strings for // 'fromfile', 'tofile', 'fromfiledate', and 'tofiledate'. // The modification times are normally expressed in the ISO 8601 format. func WriteUnifiedDiff(writer io.Writer, diff UnifiedDiff) error { … } // Like WriteUnifiedDiff but returns the diff a string. func GetUnifiedDiffString(diff UnifiedDiff) (string, error) { … } // Split a string on "\n" while preserving them. The output can be used // as input for UnifiedDiff and ContextDiff structures. func SplitLines(s string) []string { … }