type PKCS1v15DecryptOptions … // EncryptPKCS1v15 encrypts the given message with RSA and the padding // scheme from PKCS #1 v1.5. The message must be no longer than the // length of the public modulus minus 11 bytes. // // The random parameter is used as a source of entropy to ensure that // encrypting the same message twice doesn't result in the same // ciphertext. Most applications should use [crypto/rand.Reader] // as random. Note that the returned ciphertext does not depend // deterministically on the bytes read from random, and may change // between calls and/or between versions. // // WARNING: use of this function to encrypt plaintexts other than // session keys is dangerous. Use RSA OAEP in new protocols. func EncryptPKCS1v15(random io.Reader, pub *PublicKey, msg []byte) ([]byte, error) { … } // DecryptPKCS1v15 decrypts a plaintext using RSA and the padding scheme from PKCS #1 v1.5. // The random parameter is legacy and ignored, and it can be nil. // // Note that whether this function returns an error or not discloses secret // information. If an attacker can cause this function to run repeatedly and // learn whether each instance returned an error then they can decrypt and // forge signatures as if they had the private key. See // DecryptPKCS1v15SessionKey for a way of solving this problem. func DecryptPKCS1v15(random io.Reader, priv *PrivateKey, ciphertext []byte) ([]byte, error) { … } // DecryptPKCS1v15SessionKey decrypts a session key using RSA and the padding // scheme from PKCS #1 v1.5. The random parameter is legacy and ignored, and it // can be nil. // // DecryptPKCS1v15SessionKey returns an error if the ciphertext is the wrong // length or if the ciphertext is greater than the public modulus. Otherwise, no // error is returned. If the padding is valid, the resulting plaintext message // is copied into key. Otherwise, key is unchanged. These alternatives occur in // constant time. It is intended that the user of this function generate a // random session key beforehand and continue the protocol with the resulting // value. // // Note that if the session key is too small then it may be possible for an // attacker to brute-force it. If they can do that then they can learn whether a // random value was used (because it'll be different for the same ciphertext) // and thus whether the padding was correct. This also defeats the point of this // function. Using at least a 16-byte key will protect against this attack. // // This method implements protections against Bleichenbacher chosen ciphertext // attacks [0] described in RFC 3218 Section 2.3.2 [1]. While these protections // make a Bleichenbacher attack significantly more difficult, the protections // are only effective if the rest of the protocol which uses // DecryptPKCS1v15SessionKey is designed with these considerations in mind. In // particular, if any subsequent operations which use the decrypted session key // leak any information about the key (e.g. whether it is a static or random // key) then the mitigations are defeated. This method must be used extremely // carefully, and typically should only be used when absolutely necessary for // compatibility with an existing protocol (such as TLS) that is designed with // these properties in mind. // // - [0] “Chosen Ciphertext Attacks Against Protocols Based on the RSA Encryption // Standard PKCS #1”, Daniel Bleichenbacher, Advances in Cryptology (Crypto '98) // - [1] RFC 3218, Preventing the Million Message Attack on CMS, // https://www.rfc-editor.org/rfc/rfc3218.html func DecryptPKCS1v15SessionKey(random io.Reader, priv *PrivateKey, ciphertext []byte, key []byte) error { … } // decryptPKCS1v15 decrypts ciphertext using priv. It returns one or zero in // valid that indicates whether the plaintext was correctly structured. // In either case, the plaintext is returned in em so that it may be read // independently of whether it was valid in order to maintain constant memory // access patterns. If the plaintext was valid then index contains the index of // the original message in em, to allow constant time padding removal. func decryptPKCS1v15(priv *PrivateKey, ciphertext []byte) (valid int, em []byte, index int, err error) { … } // nonZeroRandomBytes fills the given slice with non-zero random octets. func nonZeroRandomBytes(s []byte, random io.Reader) (err error) { … } var hashPrefixes … // SignPKCS1v15 calculates the signature of hashed using // RSASSA-PKCS1-V1_5-SIGN from RSA PKCS #1 v1.5. Note that hashed must // be the result of hashing the input message using the given hash // function. If hash is zero, hashed is signed directly. This isn't // advisable except for interoperability. // // The random parameter is legacy and ignored, and it can be nil. // // This function is deterministic. Thus, if the set of possible // messages is small, an attacker may be able to build a map from // messages to signatures and identify the signed messages. As ever, // signatures provide authenticity, not confidentiality. func SignPKCS1v15(random io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte) ([]byte, error) { … } func pkcs1v15ConstructEM(pub *PublicKey, hash crypto.Hash, hashed []byte) ([]byte, error) { … } // VerifyPKCS1v15 verifies an RSA PKCS #1 v1.5 signature. // hashed is the result of hashing the input message using the given hash // function and sig is the signature. A valid signature is indicated by // returning a nil error. If hash is zero then hashed is used directly. This // isn't advisable except for interoperability. // // The inputs are not considered confidential, and may leak through timing side // channels, or if an attacker has control of part of the inputs. func VerifyPKCS1v15(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte) error { … }