go/src/math/big/int.go

type Int

var intOne

// Sign returns:
//   - -1 if x < 0;
//   - 0 if x == 0;
//   - +1 if x > 0.
func (x *Int) Sign() int {}

// SetInt64 sets z to x and returns z.
func (z *Int) SetInt64(x int64) *Int {}

// SetUint64 sets z to x and returns z.
func (z *Int) SetUint64(x uint64) *Int {}

// NewInt allocates and returns a new [Int] set to x.
func NewInt(x int64) *Int {}

// Set sets z to x and returns z.
func (z *Int) Set(x *Int) *Int {}

// Bits provides raw (unchecked but fast) access to x by returning its
// absolute value as a little-endian [Word] slice. The result and x share
// the same underlying array.
// Bits is intended to support implementation of missing low-level [Int]
// functionality outside this package; it should be avoided otherwise.
func (x *Int) Bits() []Word {}

// SetBits provides raw (unchecked but fast) access to z by setting its
// value to abs, interpreted as a little-endian [Word] slice, and returning
// z. The result and abs share the same underlying array.
// SetBits is intended to support implementation of missing low-level [Int]
// functionality outside this package; it should be avoided otherwise.
func (z *Int) SetBits(abs []Word) *Int {}

// Abs sets z to |x| (the absolute value of x) and returns z.
func (z *Int) Abs(x *Int) *Int {}

// Neg sets z to -x and returns z.
func (z *Int) Neg(x *Int) *Int {}

// Add sets z to the sum x+y and returns z.
func (z *Int) Add(x, y *Int) *Int {}

// Sub sets z to the difference x-y and returns z.
func (z *Int) Sub(x, y *Int) *Int {}

// Mul sets z to the product x*y and returns z.
func (z *Int) Mul(x, y *Int) *Int {}

// MulRange sets z to the product of all integers
// in the range [a, b] inclusively and returns z.
// If a > b (empty range), the result is 1.
func (z *Int) MulRange(a, b int64) *Int {}

// Binomial sets z to the binomial coefficient C(n, k) and returns z.
func (z *Int) Binomial(n, k int64) *Int {}

// Quo sets z to the quotient x/y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// Quo implements truncated division (like Go); see [Int.QuoRem] for more details.
func (z *Int) Quo(x, y *Int) *Int {}

// Rem sets z to the remainder x%y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// Rem implements truncated modulus (like Go); see [Int.QuoRem] for more details.
func (z *Int) Rem(x, y *Int) *Int {}

// QuoRem sets z to the quotient x/y and r to the remainder x%y
// and returns the pair (z, r) for y != 0.
// If y == 0, a division-by-zero run-time panic occurs.
//
// QuoRem implements T-division and modulus (like Go):
//
//	q = x/y      with the result truncated to zero
//	r = x - y*q
//
// (See Daan Leijen, “Division and Modulus for Computer Scientists”.)
// See [Int.DivMod] for Euclidean division and modulus (unlike Go).
func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) {}

// Div sets z to the quotient x/y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// Div implements Euclidean division (unlike Go); see [Int.DivMod] for more details.
func (z *Int) Div(x, y *Int) *Int {}

// Mod sets z to the modulus x%y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// Mod implements Euclidean modulus (unlike Go); see [Int.DivMod] for more details.
func (z *Int) Mod(x, y *Int) *Int {}

// DivMod sets z to the quotient x div y and m to the modulus x mod y
// and returns the pair (z, m) for y != 0.
// If y == 0, a division-by-zero run-time panic occurs.
//
// DivMod implements Euclidean division and modulus (unlike Go):
//
//	q = x div y  such that
//	m = x - y*q  with 0 <= m < |y|
//
// (See Raymond T. Boute, “The Euclidean definition of the functions
// div and mod”. ACM Transactions on Programming Languages and
// Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992.
// ACM press.)
// See [Int.QuoRem] for T-division and modulus (like Go).
func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) {}

// Cmp compares x and y and returns:
//   - -1 if x < y;
//   - 0 if x == y;
//   - +1 if x > y.
func (x *Int) Cmp(y *Int) (r int) {}

// CmpAbs compares the absolute values of x and y and returns:
//   - -1 if |x| < |y|;
//   - 0 if |x| == |y|;
//   - +1 if |x| > |y|.
func (x *Int) CmpAbs(y *Int) int {}

// low32 returns the least significant 32 bits of x.
func low32(x nat) uint32 {}

// low64 returns the least significant 64 bits of x.
func low64(x nat) uint64 {}

// Int64 returns the int64 representation of x.
// If x cannot be represented in an int64, the result is undefined.
func (x *Int) Int64() int64 {}

// Uint64 returns the uint64 representation of x.
// If x cannot be represented in a uint64, the result is undefined.
func (x *Int) Uint64() uint64 {}

// IsInt64 reports whether x can be represented as an int64.
func (x *Int) IsInt64() bool {}

// IsUint64 reports whether x can be represented as a uint64.
func (x *Int) IsUint64() bool {}

// Float64 returns the float64 value nearest x,
// and an indication of any rounding that occurred.
func (x *Int) Float64() (float64, Accuracy) {}

// SetString sets z to the value of s, interpreted in the given base,
// and returns z and a boolean indicating success. The entire string
// (not just a prefix) must be valid for success. If SetString fails,
// the value of z is undefined but the returned value is nil.
//
// The base argument must be 0 or a value between 2 and [MaxBase].
// For base 0, the number prefix determines the actual base: A prefix of
// “0b” or “0B” selects base 2, “0”, “0o” or “0O” selects base 8,
// and “0x” or “0X” selects base 16. Otherwise, the selected base is 10
// and no prefix is accepted.
//
// For bases <= 36, lower and upper case letters are considered the same:
// The letters 'a' to 'z' and 'A' to 'Z' represent digit values 10 to 35.
// For bases > 36, the upper case letters 'A' to 'Z' represent the digit
// values 36 to 61.
//
// For base 0, an underscore character “_” may appear between a base
// prefix and an adjacent digit, and between successive digits; such
// underscores do not change the value of the number.
// Incorrect placement of underscores is reported as an error if there
// are no other errors. If base != 0, underscores are not recognized
// and act like any other character that is not a valid digit.
func (z *Int) SetString(s string, base int) (*Int, bool) {}

// setFromScanner implements SetString given an io.ByteScanner.
// For documentation see comments of SetString.
func (z *Int) setFromScanner(r io.ByteScanner, base int) (*Int, bool) {}

// SetBytes interprets buf as the bytes of a big-endian unsigned
// integer, sets z to that value, and returns z.
func (z *Int) SetBytes(buf []byte) *Int {}

// Bytes returns the absolute value of x as a big-endian byte slice.
//
// To use a fixed length slice, or a preallocated one, use [Int.FillBytes].
func (x *Int) Bytes() []byte {}

// FillBytes sets buf to the absolute value of x, storing it as a zero-extended
// big-endian byte slice, and returns buf.
//
// If the absolute value of x doesn't fit in buf, FillBytes will panic.
func (x *Int) FillBytes(buf []byte) []byte {}

// BitLen returns the length of the absolute value of x in bits.
// The bit length of 0 is 0.
func (x *Int) BitLen() int {}

// TrailingZeroBits returns the number of consecutive least significant zero
// bits of |x|.
func (x *Int) TrailingZeroBits() uint {}

// Exp sets z = x**y mod |m| (i.e. the sign of m is ignored), and returns z.
// If m == nil or m == 0, z = x**y unless y <= 0 then z = 1. If m != 0, y < 0,
// and x and m are not relatively prime, z is unchanged and nil is returned.
//
// Modular exponentiation of inputs of a particular size is not a
// cryptographically constant-time operation.
func (z *Int) Exp(x, y, m *Int) *Int {}

func (z *Int) expSlow(x, y, m *Int) *Int {}

func (z *Int) exp(x, y, m *Int, slow bool) *Int {}

// GCD sets z to the greatest common divisor of a and b and returns z.
// If x or y are not nil, GCD sets their value such that z = a*x + b*y.
//
// a and b may be positive, zero or negative. (Before Go 1.14 both had
// to be > 0.) Regardless of the signs of a and b, z is always >= 0.
//
// If a == b == 0, GCD sets z = x = y = 0.
//
// If a == 0 and b != 0, GCD sets z = |b|, x = 0, y = sign(b) * 1.
//
// If a != 0 and b == 0, GCD sets z = |a|, x = sign(a) * 1, y = 0.
func (z *Int) GCD(x, y, a, b *Int) *Int {}

// lehmerSimulate attempts to simulate several Euclidean update steps
// using the leading digits of A and B.  It returns u0, u1, v0, v1
// such that A and B can be updated as:
//
//	A = u0*A + v0*B
//	B = u1*A + v1*B
//
// Requirements: A >= B and len(B.abs) >= 2
// Since we are calculating with full words to avoid overflow,
// we use 'even' to track the sign of the cosequences.
// For even iterations: u0, v1 >= 0 && u1, v0 <= 0
// For odd  iterations: u0, v1 <= 0 && u1, v0 >= 0
func lehmerSimulate(A, B *Int) (u0, u1, v0, v1 Word, even bool) {}

// lehmerUpdate updates the inputs A and B such that:
//
//	A = u0*A + v0*B
//	B = u1*A + v1*B
//
// where the signs of u0, u1, v0, v1 are given by even
// For even == true: u0, v1 >= 0 && u1, v0 <= 0
// For even == false: u0, v1 <= 0 && u1, v0 >= 0
// q, r, s, t are temporary variables to avoid allocations in the multiplication.
func lehmerUpdate(A, B, q, r, s, t *Int, u0, u1, v0, v1 Word, even bool) {}

// euclidUpdate performs a single step of the Euclidean GCD algorithm
// if extended is true, it also updates the cosequence Ua, Ub.
func euclidUpdate(A, B, Ua, Ub, q, r, s, t *Int, extended bool) {}

// lehmerGCD sets z to the greatest common divisor of a and b,
// which both must be != 0, and returns z.
// If x or y are not nil, their values are set such that z = a*x + b*y.
// See Knuth, The Art of Computer Programming, Vol. 2, Section 4.5.2, Algorithm L.
// This implementation uses the improved condition by Collins requiring only one
// quotient and avoiding the possibility of single Word overflow.
// See Jebelean, "Improving the multiprecision Euclidean algorithm",
// Design and Implementation of Symbolic Computation Systems, pp 45-58.
// The cosequences are updated according to Algorithm 10.45 from
// Cohen et al. "Handbook of Elliptic and Hyperelliptic Curve Cryptography" pp 192.
func (z *Int) lehmerGCD(x, y, a, b *Int) *Int {}

// Rand sets z to a pseudo-random number in [0, n) and returns z.
//
// As this uses the [math/rand] package, it must not be used for
// security-sensitive work. Use [crypto/rand.Int] instead.
func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int {}

// ModInverse sets z to the multiplicative inverse of g in the ring ℤ/nℤ
// and returns z. If g and n are not relatively prime, g has no multiplicative
// inverse in the ring ℤ/nℤ.  In this case, z is unchanged and the return value
// is nil. If n == 0, a division-by-zero run-time panic occurs.
func (z *Int) ModInverse(g, n *Int) *Int {}

func (z nat) modInverse(g, n nat) nat {}

// Jacobi returns the Jacobi symbol (x/y), either +1, -1, or 0.
// The y argument must be an odd integer.
func Jacobi(x, y *Int) int {}

// modSqrt3Mod4 uses the identity
//
//	   (a^((p+1)/4))^2  mod p
//	== u^(p+1)          mod p
//	== u^2              mod p
//
// to calculate the square root of any quadratic residue mod p quickly for 3
// mod 4 primes.
func (z *Int) modSqrt3Mod4Prime(x, p *Int) *Int {}

// modSqrt5Mod8Prime uses Atkin's observation that 2 is not a square mod p
//
//	alpha ==  (2*a)^((p-5)/8)    mod p
//	beta  ==  2*a*alpha^2        mod p  is a square root of -1
//	b     ==  a*alpha*(beta-1)   mod p  is a square root of a
//
// to calculate the square root of any quadratic residue mod p quickly for 5
// mod 8 primes.
func (z *Int) modSqrt5Mod8Prime(x, p *Int) *Int {}

// modSqrtTonelliShanks uses the Tonelli-Shanks algorithm to find the square
// root of a quadratic residue modulo any prime.
func (z *Int) modSqrtTonelliShanks(x, p *Int) *Int {}

// ModSqrt sets z to a square root of x mod p if such a square root exists, and
// returns z. The modulus p must be an odd prime. If x is not a square mod p,
// ModSqrt leaves z unchanged and returns nil. This function panics if p is
// not an odd integer, its behavior is undefined if p is odd but not prime.
func (z *Int) ModSqrt(x, p *Int) *Int {}

// Lsh sets z = x << n and returns z.
func (z *Int) Lsh(x *Int, n uint) *Int {}

// Rsh sets z = x >> n and returns z.
func (z *Int) Rsh(x *Int, n uint) *Int {}

// Bit returns the value of the i'th bit of x. That is, it
// returns (x>>i)&1. The bit index i must be >= 0.
func (x *Int) Bit(i int) uint {}

// SetBit sets z to x, with x's i'th bit set to b (0 or 1).
// That is,
//   - if b is 1, SetBit sets z = x | (1 << i);
//   - if b is 0, SetBit sets z = x &^ (1 << i);
//   - if b is not 0 or 1, SetBit will panic.
func (z *Int) SetBit(x *Int, i int, b uint) *Int {}

// And sets z = x & y and returns z.
func (z *Int) And(x, y *Int) *Int {}

// AndNot sets z = x &^ y and returns z.
func (z *Int) AndNot(x, y *Int) *Int {}

// Or sets z = x | y and returns z.
func (z *Int) Or(x, y *Int) *Int {}

// Xor sets z = x ^ y and returns z.
func (z *Int) Xor(x, y *Int) *Int {}

// Not sets z = ^x and returns z.
func (z *Int) Not(x *Int) *Int {}

// Sqrt sets z to ⌊√x⌋, the largest integer such that z² ≤ x, and returns z.
// It panics if x is negative.
func (z *Int) Sqrt(x *Int) *Int {}