//===-- VOP3PInstructions.td - Vector Instruction Definitions -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// VOP3P Classes
//===----------------------------------------------------------------------===//
class VOP3P_Profile<VOPProfile P, VOP3Features Features = VOP3_REGULAR,
bit HasDPP = 0> : VOP3_Profile<P, Features> {
let IsVOP3P = 1;
let HasExtVOP3DPP = HasDPP;
// We do not want to print src modifiers for vop3p because the bits are
// overloaded in meaning and the logic in printOperandAndFPInputMods is
// wrong for vop3p
let AsmVOP3Base = AsmVOP3P;
}
// Used for FMA_MIX* and MAD_MIX* insts
// Their operands are only sort of f16 operands. Depending on
// op_sel_hi, these may be interpreted as f32. The inline immediate
// values are really f16 converted to f32, so we treat these as f16
// operands.
class VOP3P_Mix_Profile<VOPProfile P, VOP3Features Features = VOP3_REGULAR,
bit useTiedOutput = 0> : VOP3P_Profile<P, Features, 1> {
bit UseTiedOutput = useTiedOutput;
dag srcs =
(ins FP16InputMods:$src0_modifiers, VCSrc_f16:$src0,
FP16InputMods:$src1_modifiers, VCSrc_f16:$src1,
FP16InputMods:$src2_modifiers, VCSrc_f16:$src2);
dag dpp_srcs =
(ins FPVRegInputMods:$src0_modifiers, VGPRSrc_32:$src0,
FPVRegInputMods:$src1_modifiers, VRegSrc_32:$src1,
FP16InputMods:$src2_modifiers, VCSrc_f16:$src2);
// FIXME: Clamp0 misbehaves with the non-default vdst_in
// following it. For now workaround this by requiring clamp
// in tied patterns. This should use undef_tied_input, but it
// seems underdeveloped and doesn't apply the right register
// class constraints.
dag mods = !con(!if(UseTiedOutput, (ins Clamp:$clamp, VGPR_32:$vdst_in),
(ins Clamp0:$clamp)),
(ins op_sel0:$op_sel, op_sel_hi0:$op_sel_hi));
// We use Ins64 because that is the one which populates InOperandList
// due to the logic in class VOP3_Pseudo
let Ins64 = !con(srcs, mods);
let InsVOP3Base = !con(dpp_srcs, mods);
let AsmVOP3Base =
"$vdst, $src0_modifiers, $src1_modifiers, $src2_modifiers$op_sel$op_sel_hi$clamp";
}
multiclass VOP3PInst<string OpName, VOPProfile P,
SDPatternOperator node = null_frag, bit IsDOT = 0> {
def NAME : VOP3P_Pseudo<OpName, P,
!if (P.HasModifiers,
getVOP3PModPat<P, node, IsDOT, IsDOT>.ret,
getVOP3Pat<P, node>.ret)>;
let SubtargetPredicate = isGFX11Plus in {
if P.HasExtVOP3DPP then
def _dpp : VOP3_DPP_Pseudo<OpName, P> {
let VOP3P = 1;
let PseudoInstr = OpName #"_dpp";
}
} // end SubtargetPredicate = isGFX11Plus
}
// Non-packed instructions that use the VOP3P encoding.
// VOP3 neg/abs and VOP3P opsel/opsel_hi modifiers are allowed.
multiclass VOP3_VOP3PInst<string OpName, VOP3P_Mix_Profile P> {
def NAME : VOP3P_Pseudo<OpName, P> {
let Constraints = !if(P.UseTiedOutput, "$vdst = $vdst_in", "");
let DisableEncoding = !if(P.UseTiedOutput, "$vdst_in", "");
}
let SubtargetPredicate = isGFX11Plus in {
if P.HasExtVOP3DPP then
def _dpp : VOP3_DPP_Pseudo<OpName, P> {
let VOP3P = 1;
let PseudoInstr = OpName#"_dpp";
let Constraints = !if(P.UseTiedOutput, "$vdst = $vdst_in", "");
let DisableEncoding = !if(P.UseTiedOutput, "$vdst_in", "");
}
} // end SubtargetPredicate = isGFX11Plus
}
let isReMaterializable = 1 in {
let isCommutable = 1 in {
defm V_PK_MAD_I16 : VOP3PInst<"v_pk_mad_i16", VOP3P_Profile<VOP_V2I16_V2I16_V2I16_V2I16>>;
defm V_PK_MAD_U16 : VOP3PInst<"v_pk_mad_u16", VOP3P_Profile<VOP_V2I16_V2I16_V2I16_V2I16>, imad>;
let FPDPRounding = 1 in {
defm V_PK_FMA_F16 : VOP3PInst<"v_pk_fma_f16", VOP3P_Profile<VOP_V2F16_V2F16_V2F16_V2F16>, any_fma>;
defm V_PK_ADD_F16 : VOP3PInst<"v_pk_add_f16", VOP3P_Profile<VOP_V2F16_V2F16_V2F16>, any_fadd>;
defm V_PK_MUL_F16 : VOP3PInst<"v_pk_mul_f16", VOP3P_Profile<VOP_V2F16_V2F16_V2F16>, any_fmul>;
} // End FPDPRounding = 1
defm V_PK_MAX_F16 : VOP3PInst<"v_pk_max_f16", VOP3P_Profile<VOP_V2F16_V2F16_V2F16>, fmaxnum_like>;
defm V_PK_MIN_F16 : VOP3PInst<"v_pk_min_f16", VOP3P_Profile<VOP_V2F16_V2F16_V2F16>, fminnum_like>;
defm V_PK_ADD_U16 : VOP3PInst<"v_pk_add_u16", VOP3P_Profile<VOP_V2I16_V2I16_V2I16>, add>;
defm V_PK_ADD_I16 : VOP3PInst<"v_pk_add_i16", VOP3P_Profile<VOP_V2I16_V2I16_V2I16>>;
defm V_PK_MUL_LO_U16 : VOP3PInst<"v_pk_mul_lo_u16", VOP3P_Profile<VOP_V2I16_V2I16_V2I16>, mul>;
defm V_PK_MIN_I16 : VOP3PInst<"v_pk_min_i16", VOP3P_Profile<VOP_V2I16_V2I16_V2I16>, smin>;
defm V_PK_MIN_U16 : VOP3PInst<"v_pk_min_u16", VOP3P_Profile<VOP_V2I16_V2I16_V2I16>, umin>;
defm V_PK_MAX_I16 : VOP3PInst<"v_pk_max_i16", VOP3P_Profile<VOP_V2I16_V2I16_V2I16>, smax>;
defm V_PK_MAX_U16 : VOP3PInst<"v_pk_max_u16", VOP3P_Profile<VOP_V2I16_V2I16_V2I16>, umax>;
let SubtargetPredicate = isGFX12Plus, ReadsModeReg = 0 in {
defm V_PK_MAXIMUM_F16 : VOP3PInst<"v_pk_maximum_f16", VOP3P_Profile<VOP_V2F16_V2F16_V2F16, VOP3_PACKED>, fmaximum>;
defm V_PK_MINIMUM_F16 : VOP3PInst<"v_pk_minimum_f16", VOP3P_Profile<VOP_V2F16_V2F16_V2F16, VOP3_PACKED>, fminimum>;
} // End SubtargetPredicate = isGFX12Plus, ReadsModeReg = 0
}
defm V_PK_SUB_U16 : VOP3PInst<"v_pk_sub_u16", VOP3P_Profile<VOP_V2I16_V2I16_V2I16>>;
defm V_PK_SUB_I16 : VOP3PInst<"v_pk_sub_i16", VOP3P_Profile<VOP_V2I16_V2I16_V2I16>, sub>;
defm V_PK_LSHLREV_B16 : VOP3PInst<"v_pk_lshlrev_b16", VOP3P_Profile<VOP_V2I16_V2I16_V2I16>, clshl_rev_16>;
defm V_PK_ASHRREV_I16 : VOP3PInst<"v_pk_ashrrev_i16", VOP3P_Profile<VOP_V2I16_V2I16_V2I16>, cashr_rev_16>;
defm V_PK_LSHRREV_B16 : VOP3PInst<"v_pk_lshrrev_b16", VOP3P_Profile<VOP_V2I16_V2I16_V2I16>, clshr_rev_16>;
} // End isReMaterializable = 1
let SubtargetPredicate = HasVOP3PInsts in {
// Integer operations with clamp bit set.
class VOP3PSatPat<SDPatternOperator pat, Instruction inst> : GCNPat<
(pat (v2i16 (VOP3PMods v2i16:$src0, i32:$src0_modifiers)),
(v2i16 (VOP3PMods v2i16:$src1, i32:$src1_modifiers))),
(inst $src0_modifiers, $src0, $src1_modifiers, $src1, DSTCLAMP.ENABLE)
>;
def : VOP3PSatPat<uaddsat, V_PK_ADD_U16>;
def : VOP3PSatPat<saddsat, V_PK_ADD_I16>;
def : VOP3PSatPat<usubsat, V_PK_SUB_U16>;
def : VOP3PSatPat<ssubsat, V_PK_SUB_I16>;
} // End SubtargetPredicate = HasVOP3PInsts
// TODO: Make sure we're doing the right thing with denormals. Note
// that FMA and MAD will differ.
multiclass MadFmaMixPats<SDPatternOperator fma_like,
Instruction mix_inst,
Instruction mixlo_inst,
Instruction mixhi_inst> {
// At least one of the operands needs to be an fpextend of an f16
// for this to be worthwhile, so we need three patterns here.
// TODO: Could we use a predicate to inspect src1/2/3 instead?
def : GCNPat <
(f32 (fma_like (f32 (VOP3PMadMixModsExt f16:$src0, i32:$src0_mods)),
(f32 (VOP3PMadMixMods f16:$src1, i32:$src1_mods)),
(f32 (VOP3PMadMixMods f16:$src2, i32:$src2_mods)))),
(mix_inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2,
DSTCLAMP.NONE)>;
def : GCNPat <
(f32 (fma_like (f32 (VOP3PMadMixMods f16:$src0, i32:$src0_mods)),
(f32 (VOP3PMadMixModsExt f16:$src1, i32:$src1_mods)),
(f32 (VOP3PMadMixMods f32:$src2, i32:$src2_mods)))),
(mix_inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2,
DSTCLAMP.NONE)>;
def : GCNPat <
(f32 (fma_like (f32 (VOP3PMadMixMods f16:$src0, i32:$src0_mods)),
(f32 (VOP3PMadMixMods f32:$src1, i32:$src1_mods)),
(f32 (VOP3PMadMixModsExt f16:$src2, i32:$src2_mods)))),
(mix_inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2,
DSTCLAMP.NONE)>;
def : GCNPat <
(f16 (fpround (fma_like (f32 (VOP3PMadMixMods f16:$src0, i32:$src0_modifiers)),
(f32 (VOP3PMadMixMods f16:$src1, i32:$src1_modifiers)),
(f32 (VOP3PMadMixMods f16:$src2, i32:$src2_modifiers))))),
(mixlo_inst $src0_modifiers, $src0,
$src1_modifiers, $src1,
$src2_modifiers, $src2,
DSTCLAMP.NONE,
(i32 (IMPLICIT_DEF)))
>;
// FIXME: Special case handling for maxhi (especially for clamp)
// because dealing with the write to high half of the register is
// difficult.
def : GCNPat <
(build_vector f16:$elt0, (f16 (fpround (fma_like (f32 (VOP3PMadMixMods f16:$src0, i32:$src0_modifiers)),
(f32 (VOP3PMadMixMods f16:$src1, i32:$src1_modifiers)),
(f32 (VOP3PMadMixMods f16:$src2, i32:$src2_modifiers)))))),
(v2f16 (mixhi_inst $src0_modifiers, $src0,
$src1_modifiers, $src1,
$src2_modifiers, $src2,
DSTCLAMP.NONE,
VGPR_32:$elt0))
>;
def : GCNPat <
(build_vector
f16:$elt0,
(AMDGPUclamp (f16 (fpround (fma_like (f32 (VOP3PMadMixMods f16:$src0, i32:$src0_modifiers)),
(f32 (VOP3PMadMixMods f16:$src1, i32:$src1_modifiers)),
(f32 (VOP3PMadMixMods f16:$src2, i32:$src2_modifiers))))))),
(v2f16 (mixhi_inst $src0_modifiers, $src0,
$src1_modifiers, $src1,
$src2_modifiers, $src2,
DSTCLAMP.ENABLE,
VGPR_32:$elt0))
>;
def : GCNPat <
(AMDGPUclamp (build_vector
(f16 (fpround (fma_like (f32 (VOP3PMadMixMods f16:$lo_src0, i32:$lo_src0_modifiers)),
(f32 (VOP3PMadMixMods f16:$lo_src1, i32:$lo_src1_modifiers)),
(f32 (VOP3PMadMixMods f16:$lo_src2, i32:$lo_src2_modifiers))))),
(f16 (fpround (fma_like (f32 (VOP3PMadMixMods f16:$hi_src0, i32:$hi_src0_modifiers)),
(f32 (VOP3PMadMixMods f16:$hi_src1, i32:$hi_src1_modifiers)),
(f32 (VOP3PMadMixMods f16:$hi_src2, i32:$hi_src2_modifiers))))))),
(v2f16 (mixhi_inst $hi_src0_modifiers, $hi_src0,
$hi_src1_modifiers, $hi_src1,
$hi_src2_modifiers, $hi_src2,
DSTCLAMP.ENABLE,
(mixlo_inst $lo_src0_modifiers, $lo_src0,
$lo_src1_modifiers, $lo_src1,
$lo_src2_modifiers, $lo_src2,
DSTCLAMP.ENABLE,
(i32 (IMPLICIT_DEF)))))
>;
def : GCNPat <
(f16 (fpround (fmul (f32 (VOP3PMadMixMods f32:$src0, i32:$src0_modifiers)),
(f32 (VOP3PMadMixMods f32:$src1, i32:$src1_modifiers))))),
(mixlo_inst $src0_modifiers, $src0,
$src1_modifiers, $src1,
(i32 0), (i32 0),
DSTCLAMP.NONE,
(i32 (IMPLICIT_DEF)))
>;
def : GCNPat <
(build_vector f16:$elt0, (f16 (fpround (fmul (f32 (VOP3PMadMixMods f32:$src0, i32:$src0_modifiers)),
(f32 (VOP3PMadMixMods f32:$src1, i32:$src1_modifiers)))))),
(v2f16 (mixhi_inst $src0_modifiers, $src0,
$src1_modifiers, $src1,
(i32 0), (i32 0),
DSTCLAMP.NONE,
VGPR_32:$elt0))
>;
}
let SubtargetPredicate = HasMadMixInsts, OtherPredicates = [NoFP32Denormals] in {
// These are VOP3a-like opcodes which accept no omod.
// Size of src arguments (16/32) is controlled by op_sel.
// For 16-bit src arguments their location (hi/lo) are controlled by op_sel_hi.
let isCommutable = 1, mayRaiseFPException = 0 in {
let isReMaterializable = 1 in
defm V_MAD_MIX_F32 : VOP3_VOP3PInst<"v_mad_mix_f32", VOP3P_Mix_Profile<VOP_F32_F16_F16_F16, VOP3_OPSEL>>;
let FPDPRounding = 1 in {
// Clamp modifier is applied after conversion to f16.
defm V_MAD_MIXLO_F16 : VOP3_VOP3PInst<"v_mad_mixlo_f16", VOP3P_Mix_Profile<VOP_F16_F16_F16_F16, VOP3_OPSEL, 1>>;
let ClampLo = 0, ClampHi = 1 in {
defm V_MAD_MIXHI_F16 : VOP3_VOP3PInst<"v_mad_mixhi_f16", VOP3P_Mix_Profile<VOP_F16_F16_F16_F16, VOP3_OPSEL, 1>>;
}
} // End FPDPRounding = 1
}
defm : MadFmaMixPats<fmad, V_MAD_MIX_F32, V_MAD_MIXLO_F16, V_MAD_MIXHI_F16>;
} // End SubtargetPredicate = HasMadMixInsts, OtherPredicates = [NoFP32Denormals]
// Essentially the same as the mad_mix versions
let SubtargetPredicate = HasFmaMixInsts in {
let isCommutable = 1 in {
let isReMaterializable = 1 in
defm V_FMA_MIX_F32 : VOP3_VOP3PInst<"v_fma_mix_f32", VOP3P_Mix_Profile<VOP_F32_F16_F16_F16, VOP3_OPSEL>>;
let FPDPRounding = 1 in {
// Clamp modifier is applied after conversion to f16.
defm V_FMA_MIXLO_F16 : VOP3_VOP3PInst<"v_fma_mixlo_f16", VOP3P_Mix_Profile<VOP_F16_F16_F16_F16, VOP3_OPSEL, 1>>;
let ClampLo = 0, ClampHi = 1 in {
defm V_FMA_MIXHI_F16 : VOP3_VOP3PInst<"v_fma_mixhi_f16", VOP3P_Mix_Profile<VOP_F16_F16_F16_F16, VOP3_OPSEL, 1>>;
}
} // End FPDPRounding = 1
}
defm : MadFmaMixPats<fma, V_FMA_MIX_F32, V_FMA_MIXLO_F16, V_FMA_MIXHI_F16>;
}
// Defines patterns that extract signed 4bit from each Idx[0].
foreach Idx = [[0,28],[4,24],[8,20],[12,16],[16,12],[20,8],[24,4]] in
def ExtractSigned4bit_#Idx[0] : PatFrag<(ops node:$src),
(sra (shl node:$src, (i32 Idx[1])), (i32 28))>;
// Defines code pattern that extracts U(unsigned/signed) 4/8bit from FromBitIndex.
class Extract<int FromBitIndex, int BitMask, bit U>: PatFrag<
(ops node:$src),
!if (!or (!and (!eq (BitMask, 255), !eq (FromBitIndex, 24)), !eq (FromBitIndex, 28)), // last element
!if (U, (srl node:$src, (i32 FromBitIndex)), (sra node:$src, (i32 FromBitIndex))),
!if (!eq (FromBitIndex, 0), // first element
!if (U, (and node:$src, (i32 BitMask)),
!if (!eq (BitMask, 15), (!cast<PatFrag>("ExtractSigned4bit_"#FromBitIndex) node:$src),
(sext_inreg node:$src, i8))),
!if (U, (and (srl node:$src, (i32 FromBitIndex)), (i32 BitMask)),
!if (!eq (BitMask, 15), (!cast<PatFrag>("ExtractSigned4bit_"#FromBitIndex) node:$src),
(sext_inreg (srl node:$src, (i32 FromBitIndex)), i8)))))>;
foreach Type = ["I", "U"] in
foreach Index = 0-3 in {
// Defines patterns that extract each Index'ed 8bit from an unsigned
// 32bit scalar value;
def Type#Index#"_8bit" : Extract<!shl(Index, 3), 255, !eq (Type, "U")>;
// Defines multiplication patterns where the multiplication is happening on each
// Index'ed 8bit of a 32bit scalar value.
def Mul#Type#_Elt#Index : PatFrag<
(ops node:$src0, node:$src1),
(!cast<HasOneUseBinOp>(!if (!eq (Type, "I"), AMDGPUmul_i24_oneuse, AMDGPUmul_u24_oneuse))
(!cast<Extract>(Type#Index#"_8bit") node:$src0),
(!cast<Extract>(Type#Index#"_8bit") node:$src1))>;
}
// Different variants of dot8 patterns cause a huge increase in the compile time.
// Define non-associative/commutative add/mul to prevent permutation in the dot8
// pattern.
def NonACAdd : SDNode<"ISD::ADD" , SDTIntBinOp>;
def NonACAdd_oneuse : HasOneUseBinOp<NonACAdd>;
def NonACAMDGPUmul_u24 : SDNode<"AMDGPUISD::MUL_U24" , SDTIntBinOp>;
def NonACAMDGPUmul_u24_oneuse : HasOneUseBinOp<NonACAMDGPUmul_u24>;
def NonACAMDGPUmul_i24 : SDNode<"AMDGPUISD::MUL_I24" , SDTIntBinOp>;
def NonACAMDGPUmul_i24_oneuse : HasOneUseBinOp<NonACAMDGPUmul_i24>;
foreach Type = ["I", "U"] in
foreach Index = 0-7 in {
// Defines patterns that extract each Index'ed 4bit from an unsigned
// 32bit scalar value;
def Type#Index#"_4bit" : Extract<!shl(Index, 2), 15, !eq (Type, "U")>;
// Defines multiplication patterns where the multiplication is happening on each
// Index'ed 8bit of a 32bit scalar value.
def Mul#Type#Index#"_4bit" : PatFrag<
(ops node:$src0, node:$src1),
(!cast<HasOneUseBinOp>(!if (!eq (Type, "I"), NonACAMDGPUmul_i24_oneuse, NonACAMDGPUmul_u24_oneuse))
(!cast<Extract>(Type#Index#"_4bit") node:$src0),
(!cast<Extract>(Type#Index#"_4bit") node:$src1))>;
}
class UDot2Pat<VOP_Pseudo Inst> : GCNPat <
(add (add_oneuse (AMDGPUmul_u24_oneuse (srl i32:$src0, (i32 16)),
(srl i32:$src1, (i32 16))), i32:$src2),
(AMDGPUmul_u24_oneuse (and i32:$src0, (i32 65535)),
(and i32:$src1, (i32 65535)))
),
(Inst (i32 8), $src0, (i32 8), $src1, (i32 8), $src2, (i1 0))> {
let Predicates = Inst.Predicates;
}
class SDot2Pat<VOP_Pseudo Inst> : GCNPat <
(add (add_oneuse (AMDGPUmul_i24_oneuse (sra i32:$src0, (i32 16)),
(sra i32:$src1, (i32 16))), i32:$src2),
(AMDGPUmul_i24_oneuse (sext_inreg i32:$src0, i16),
(sext_inreg i32:$src1, i16))),
(Inst (i32 8), $src0, (i32 8), $src1, (i32 8), $src2, (i1 0))> {
let Predicates = Inst.Predicates;
}
let IsDOT = 1 in {
let OtherPredicates = [HasDot2Insts] in {
defm V_DOT2_I32_I16 : VOP3PInst<"v_dot2_i32_i16",
VOP3P_Profile<VOP_I32_V2I16_V2I16_I32>, int_amdgcn_sdot2, 1>;
defm V_DOT2_U32_U16 : VOP3PInst<"v_dot2_u32_u16",
VOP3P_Profile<VOP_I32_V2I16_V2I16_I32>, int_amdgcn_udot2, 1>;
} // End OtherPredicates = [HasDot2Insts]
let OtherPredicates = [HasDot10Insts] in
defm V_DOT2_F32_F16 : VOP3PInst<"v_dot2_f32_f16",
VOP3P_Profile<VOP_F32_V2F16_V2F16_F32, VOP3_REGULAR, /*HasDPP*/ 1>,
AMDGPUfdot2, 1/*ExplicitClamp*/>;
let OtherPredicates = [HasDot7Insts] in {
let IsInvalidSingleUseConsumer = 1 in {
defm V_DOT4_U32_U8 : VOP3PInst<"v_dot4_u32_u8",
VOP3P_Profile<VOP_I32_I32_I32_I32, VOP3_PACKED>, int_amdgcn_udot4, 1>;
}
defm V_DOT8_U32_U4 : VOP3PInst<"v_dot8_u32_u4",
VOP3P_Profile<VOP_I32_I32_I32_I32, VOP3_PACKED>, int_amdgcn_udot8, 1>;
} // End OtherPredicates = [HasDot7Insts]
let OtherPredicates = [HasDot1Insts] in {
let IsInvalidSingleUseConsumer = 1 in {
defm V_DOT4_I32_I8 : VOP3PInst<"v_dot4_i32_i8",
VOP3P_Profile<VOP_I32_I32_I32_I32, VOP3_PACKED>, int_amdgcn_sdot4, 1>;
}
defm V_DOT8_I32_I4 : VOP3PInst<"v_dot8_i32_i4",
VOP3P_Profile<VOP_I32_I32_I32_I32, VOP3_PACKED>, int_amdgcn_sdot8, 1>;
} // End OtherPredicates = [HasDot1Insts]
def DOT2_BF16_Profile
: VOP3P_Profile<VOP_F32_V2BF16_V2BF16_F32, VOP3_REGULAR, /*HasDPP*/ 1> {
let HasSrc1Mods = 1;
}
let SubtargetPredicate = HasDot9Insts in {
defm V_DOT2_F32_BF16 : VOP3PInst<"v_dot2_f32_bf16", DOT2_BF16_Profile,
int_amdgcn_fdot2_f32_bf16, 1>;
} // End SubtargetPredicate = HasDot9Insts
} // End let IsDOT = 1
multiclass VOP3PDOTIUInst <string OpName, SDPatternOperator intrinsic_node> {
let IsDOT = 1 in
defm NAME : VOP3PInst<OpName, VOP3P_Profile<VOP_I32_I32_I32_I32, VOP3_PACKED>,
null_frag, 1>;
// Dot-iu instructions consider input as signed if imod neg bits are set. Thus
// Dot-iu Intrinsics have extra operands and require separate codegen pattern.
def : GCNPat < (intrinsic_node (VOP3PModsNeg i32:$src0_mods), i32:$src0,
(VOP3PModsNeg i32:$src1_mods), i32:$src1,
i32:$src2, (i1 timm:$clamp)),
(!cast<Instruction>(NAME) $src0_mods, i32:$src0,
$src1_mods, i32:$src1,
(i32 8), i32:$src2, i1:$clamp)
>;
}
let SubtargetPredicate = HasDot8Insts in {
defm V_DOT4_I32_IU8 : VOP3PDOTIUInst<"v_dot4_i32_iu8", int_amdgcn_sudot4>;
defm V_DOT8_I32_IU4 : VOP3PDOTIUInst<"v_dot8_i32_iu4", int_amdgcn_sudot8>;
def : GCNPat < (int_amdgcn_sdot8 i32:$src0,
i32:$src1,
i32:$src2, (i1 timm:$clamp)),
(V_DOT8_I32_IU4 (i32 9), i32:$src0,
(i32 9), i32:$src1, (i32 8), i32:$src2, i1:$clamp)
>;
def : GCNPat < (int_amdgcn_sdot4 i32:$src0,
i32:$src1,
i32:$src2, (i1 timm:$clamp)),
(V_DOT4_I32_IU8 (i32 9), i32:$src0,
(i32 9), i32:$src1, (i32 8), i32:$src2, i1:$clamp)
>;
} // End SubtargetPredicate = HasDot8Insts
// Does not use opsel, no src_modifiers on src0 and src1.
// src_modifiers on src2(f32) are f32 fneg(neg_lo[2]) and f32 fabs(neg_hi[2]).
def VOP3P_DOTF8_Profile : VOP3P_Profile<VOPProfile <[f32, i32, i32, f32]>,
VOP3_PACKED, 1> {
let HasClamp = 0;
let HasOpSel = 0;
let HasOMod = 0;
let IsDOT = 1;
let HasSrc0Mods = 0;
let HasSrc1Mods = 0;
let HasSrc2Mods = 1;
let InsVOP3P = (ins VSrc_b32:$src0, VSrc_b32:$src1,
PackedF16InputMods:$src2_modifiers, VSrc_f32:$src2,
neg_lo0:$neg_lo, neg_hi0:$neg_hi);
let InsVOP3DPP8 = (ins DstRC:$old, VGPR_32:$src0, VRegSrc_32:$src1,
PackedF16InputMods:$src2_modifiers, VRegSrc_32:$src2,
neg_lo0:$neg_lo, neg_hi0:$neg_hi, dpp8:$dpp8, Dpp8FI:$fi);
let InsVOP3DPP16 = (ins DstRC:$old, VGPR_32:$src0, VRegSrc_32:$src1,
PackedF16InputMods:$src2_modifiers, VRegSrc_32:$src2,
neg_lo0:$neg_lo, neg_hi0:$neg_hi, dpp_ctrl:$dpp_ctrl,
DppRowMask:$row_mask, DppBankMask:$bank_mask,
DppBoundCtrl:$bound_ctrl, Dpp16FI:$fi);
}
multiclass VOP3PDOTF8Inst <string OpName, SDPatternOperator intrinsic_node> {
defm NAME : VOP3PInst<OpName, VOP3P_DOTF8_Profile, null_frag, 1>;
let SubtargetPredicate = isGFX12Plus in
def : GCNPat <(intrinsic_node i32:$src0, i32:$src1,
(VOP3Mods f32:$src2, i32:$src2_modifiers)),
(!cast<Instruction>(NAME) i32:$src0, i32:$src1,
i32:$src2_modifiers, f32:$src2)>;
}
let OtherPredicates = [HasDot11Insts] in {
defm V_DOT4_F32_FP8_BF8 : VOP3PDOTF8Inst<"v_dot4_f32_fp8_bf8", int_amdgcn_dot4_f32_fp8_bf8>;
defm V_DOT4_F32_BF8_FP8 : VOP3PDOTF8Inst<"v_dot4_f32_bf8_fp8", int_amdgcn_dot4_f32_bf8_fp8>;
defm V_DOT4_F32_FP8_FP8 : VOP3PDOTF8Inst<"v_dot4_f32_fp8_fp8", int_amdgcn_dot4_f32_fp8_fp8>;
defm V_DOT4_F32_BF8_BF8 : VOP3PDOTF8Inst<"v_dot4_f32_bf8_bf8", int_amdgcn_dot4_f32_bf8_bf8>;
}
def : UDot2Pat<V_DOT2_U32_U16>;
def : SDot2Pat<V_DOT2_I32_I16>;
foreach Type = ["U", "I"] in
let Predicates = !cast<VOP_Pseudo>("V_DOT4_"#Type#"32_"#Type#8).Predicates in
def : GCNPat <
!cast<dag>(!foldl((i32 i32:$src2), [0, 1, 2, 3], lhs, y,
(add_oneuse lhs, (!cast<PatFrag>("Mul"#Type#"_Elt"#y) i32:$src0, i32:$src1)))),
(!cast<VOP3P_Pseudo>("V_DOT4_"#Type#"32_"#Type#8) (i32 8), $src0, (i32 8), $src1, (i32 8), $src2, (i1 0))>;
foreach Type = ["U", "I"] in
let Predicates = !cast<VOP_Pseudo>("V_DOT8_"#Type#"32_"#Type#4).Predicates in
def : GCNPat <
!cast<dag>(!foldl((add_oneuse i32:$src2, (!cast<PatFrag>("Mul"#Type#"0_4bit") i32:$src0, i32:$src1)),
[1, 2, 3, 4, 5, 6, 7], lhs, y,
(NonACAdd_oneuse lhs, (!cast<PatFrag>("Mul"#Type#y#"_4bit") i32:$src0, i32:$src1)))),
(!cast<VOP3P_Pseudo>("V_DOT8_"#Type#"32_"#Type#4) (i32 8), $src0, (i32 8), $src1, (i32 8), $src2, (i1 0))>;
// Different variants of dot8 code-gen dag patterns are not generated through table-gen due to a huge increase
// in the compile time. Directly handle the pattern generated by the FE here.
foreach Type = ["U", "I"] in
let Predicates = !cast<VOP_Pseudo>("V_DOT8_"#Type#"32_"#Type#4).Predicates in
def : GCNPat <
!cast<dag>(!foldl((add_oneuse i32:$src2, (!cast<PatFrag>("Mul"#Type#"0_4bit") i32:$src0, i32:$src1)),
[7, 1, 2, 3, 4, 5, 6], lhs, y,
(NonACAdd_oneuse lhs, (!cast<PatFrag>("Mul"#Type#y#"_4bit") i32:$src0, i32:$src1)))),
(!cast<VOP3P_Pseudo>("V_DOT8_"#Type#"32_"#Type#4) (i32 8), $src0, (i32 8), $src1, (i32 8), $src2, (i1 0))>;
def ADst_32 : VOPDstOperand<AGPR_32>;
def ADst_64 : VOPDstOperand<AReg_64>;
def ADst_128 : VOPDstOperand<AReg_128>;
def ADst_256 : VOPDstOperand<AReg_256>;
def ADst_512 : VOPDstOperand<AReg_512>;
def ADst_1024 : VOPDstOperand<AReg_1024>;
def VDst_64 : VOPDstOperand<VReg_64>;
def VDst_128 : VOPDstOperand<VReg_128>;
def VDst_256 : VOPDstOperand<VReg_256>;
def VDst_512 : VOPDstOperand<VReg_512>;
def VDst_1024 : VOPDstOperand<VReg_1024>;
def VOPProfileAccRead : VOP3P_Profile<VOP_I32_I32, VOP3_MAI> {
let Src0RC64 = ARegSrc_32;
}
def VOPProfileAccWrite : VOP3P_Profile<VOP_I32_I32, VOP3_MAI> {
let DstRC = ADst_32;
let Src0RC64 = VCSrc_b32;
}
class VOPProfileMAI<VOPProfile P, RegisterOperand _SrcRC, RegisterOperand _DstRC,
RegisterOperand SrcABRC = AVSrc_32>
: VOP3P_Profile<P, VOP3_MAI> {
let DstRC = _DstRC;
let Src0RC64 = SrcABRC;
let Src1RC64 = SrcABRC;
let Src2RC64 = _SrcRC;
let HasOpSel = 0;
let HasClamp = 0;
let HasIntClamp = 0;
let HasOMod = 0;
let HasModifiers = 0;
let AsmVOP3Base = "$vdst, $src0, $src1, $src2$cbsz$abid$blgp";
let Ins64 = (ins Src0RC64:$src0, Src1RC64:$src1, Src2RC64:$src2, CBSZ:$cbsz, ABID:$abid, blgp:$blgp);
let InsVOP3Base = Ins64;
// Dst and SrcC cannot partially overlap if SrcC/Dst is bigger than 4 VGPRs.
// We then create two versions of the instruction: with tied dst and src2
// and with the earlyclobber flag on the dst. This is stricter than the
// actual HW restriction. In particular earlyclobber also affects src0 and
// src1 allocation which is not required.
bit NoDstOverlap = !gt(DstVT.Size, 128);
}
class VOPProfileSMFMAC<VOPProfile P, RegisterOperand _DstRC,
RegisterOperand _SrcARC, RegisterOperand _SrcBRC>
: VOPProfileMAI<P, _DstRC, _DstRC, _SrcARC> {
let Src1RC64 = _SrcBRC;
let Src2VT = DstVT;
let Asm64 = " $vdst, $src0, $src1, $idx$cbsz$abid";
let Outs64 = (outs DstRC:$vdst);
let Ins64 = (ins Src0RC64:$src0, Src1RC64:$src1, VRegSrc_32:$idx, CBSZ:$cbsz, ABID:$abid, Src2RC64:$src2);
}
def VOPProfileMAI_F32_F32_X4 : VOPProfileMAI<VOP_V4F32_F32_F32_V4F32, AISrc_128_f32, ADst_128>;
def VOPProfileMAI_F32_F32_X16 : VOPProfileMAI<VOP_V16F32_F32_F32_V16F32, AISrc_512_f32, ADst_512>;
def VOPProfileMAI_F32_F32_X32 : VOPProfileMAI<VOP_V32F32_F32_F32_V32F32, AISrc_1024_f32, ADst_1024>;
def VOPProfileMAI_I32_I32_X4 : VOPProfileMAI<VOP_V4I32_I32_I32_V4I32, AISrc_128_b32, ADst_128>;
def VOPProfileMAI_I32_I32_X16 : VOPProfileMAI<VOP_V16I32_I32_I32_V16I32, AISrc_512_b32, ADst_512>;
def VOPProfileMAI_I32_I32_X32 : VOPProfileMAI<VOP_V32I32_I32_I32_V32I32, AISrc_1024_b32, ADst_1024>;
def VOPProfileMAI_F32_V2I16_X4 : VOPProfileMAI<VOP_V4F32_V2I16_V2I16_V4F32, AISrc_128_b32, ADst_128>;
def VOPProfileMAI_F32_V2I16_X16 : VOPProfileMAI<VOP_V16F32_V2I16_V2I16_V16F32, AISrc_512_b32, ADst_512>;
def VOPProfileMAI_F32_V2I16_X32 : VOPProfileMAI<VOP_V32F32_V2I16_V2I16_V32F32, AISrc_1024_b32, ADst_1024>;
def VOPProfileMAI_F32_V4F16_X4 : VOPProfileMAI<VOP_V4F32_V4F16_V4F16_V4F32, AISrc_128_b32, ADst_128, AVSrc_64>;
def VOPProfileMAI_F32_V4F16_X16 : VOPProfileMAI<VOP_V16F32_V4F16_V4F16_V16F32, AISrc_512_b32, ADst_512, AVSrc_64>;
def VOPProfileMAI_F32_V4F16_X32 : VOPProfileMAI<VOP_V32F32_V4F16_V4F16_V32F32, AISrc_1024_b32, ADst_1024, AVSrc_64>;
def VOPProfileMAI_F32_V4I16_X4 : VOPProfileMAI<VOP_V4F32_V4I16_V4I16_V4F32, AISrc_128_b32, ADst_128, AVSrc_64>;
def VOPProfileMAI_F32_V4I16_X16 : VOPProfileMAI<VOP_V16F32_V4I16_V4I16_V16F32, AISrc_512_b32, ADst_512, AVSrc_64>;
def VOPProfileMAI_F32_V4I16_X32 : VOPProfileMAI<VOP_V32F32_V4I16_V4I16_V32F32, AISrc_1024_b32, ADst_1024, AVSrc_64>;
def VOPProfileMAI_F64_16X16X4F64 : VOPProfileMAI<VOP_V4F64_F64_F64_V4F64, AISrc_256_f64, ADst_256, AVSrc_64>;
def VOPProfileMAI_F64_4X4X4F64 : VOPProfileMAI<VOP_F64_F64_F64_F64, AISrc_64_f64, ADst_64, AVSrc_64>;
def VOPProfileMAI_I32_I64_X16 : VOPProfileMAI<VOP_V4I32_I64_I64_V4I32, AISrc_128_b32, ADst_128, AVSrc_64>;
def VOPProfileMAI_I32_I64_X32 : VOPProfileMAI<VOP_V16I32_I64_I64_V16I32, AISrc_512_b32, ADst_512, AVSrc_64>;
def VOPProfileMAI_F32_V2F32_X16 : VOPProfileMAI<VOP_V4F32_V2F32_V2F32_V4F32, AISrc_128_b32, ADst_128, AVSrc_64>;
def VOPProfileMAI_F32_V2F32_X32 : VOPProfileMAI<VOP_V16F32_V2F32_V2F32_V16F32, AISrc_512_b32, ADst_512, AVSrc_64>;
def VOPProfileMAI_F32_I64_X32 : VOPProfileMAI<VOP_V4F32_I64_I64_V4F32, AISrc_128_b32, ADst_128, AVSrc_64>;
def VOPProfileMAI_F32_I64_X16 : VOPProfileMAI<VOP_V16F32_I64_I64_V16F32, AISrc_512_b32, ADst_512, AVSrc_64>;
def VOPProfileMAI_F32_F32_X4_VCD : VOPProfileMAI<VOP_V4F32_F32_F32_V4F32, VISrc_128_f32, VDst_128>;
def VOPProfileMAI_F32_F32_X16_VCD : VOPProfileMAI<VOP_V16F32_F32_F32_V16F32, VISrc_512_f32, VDst_512>;
def VOPProfileMAI_F32_F32_X32_VCD : VOPProfileMAI<VOP_V32F32_F32_F32_V32F32, VISrc_1024_f32, VDst_1024>;
def VOPProfileMAI_I32_I32_X4_VCD : VOPProfileMAI<VOP_V4I32_I32_I32_V4I32, VISrc_128_b32, VDst_128>;
def VOPProfileMAI_I32_I32_X16_VCD : VOPProfileMAI<VOP_V16I32_I32_I32_V16I32, VISrc_512_b32, VDst_512>;
def VOPProfileMAI_I32_I32_X32_VCD : VOPProfileMAI<VOP_V32I32_I32_I32_V32I32, VISrc_1024_b32, VDst_1024>;
def VOPProfileMAI_F32_V2I16_X4_VCD : VOPProfileMAI<VOP_V4F32_V2I16_V2I16_V4F32, VISrc_128_b32, VDst_128>;
def VOPProfileMAI_F32_V2I16_X16_VCD : VOPProfileMAI<VOP_V16F32_V2I16_V2I16_V16F32, VISrc_512_b32, VDst_512>;
def VOPProfileMAI_F32_V2I16_X32_VCD : VOPProfileMAI<VOP_V32F32_V2I16_V2I16_V32F32, VISrc_1024_b32, VDst_1024>;
def VOPProfileMAI_F32_V4F16_X4_VCD : VOPProfileMAI<VOP_V4F32_V4F16_V4F16_V4F32, VISrc_128_b32, VDst_128, AVSrc_64>;
def VOPProfileMAI_F32_V4F16_X16_VCD : VOPProfileMAI<VOP_V16F32_V4F16_V4F16_V16F32, VISrc_512_b32, VDst_512, AVSrc_64>;
def VOPProfileMAI_F32_V4F16_X32_VCD : VOPProfileMAI<VOP_V32F32_V4F16_V4F16_V32F32, VISrc_1024_b32, VDst_1024, AVSrc_64>;
def VOPProfileMAI_F32_V4I16_X4_VCD : VOPProfileMAI<VOP_V4F32_V4I16_V4I16_V4F32, VISrc_128_b32, VDst_128, AVSrc_64>;
def VOPProfileMAI_F32_V4I16_X16_VCD : VOPProfileMAI<VOP_V16F32_V4I16_V4I16_V16F32, VISrc_512_b32, VDst_512, AVSrc_64>;
def VOPProfileMAI_F32_V4I16_X32_VCD : VOPProfileMAI<VOP_V32F32_V4I16_V4I16_V32F32, VISrc_1024_b32, VDst_1024, AVSrc_64>;
def VOPProfileMAI_F64_16X16X4F64_VCD : VOPProfileMAI<VOP_V4F64_F64_F64_V4F64, VISrc_256_f64, VDst_256, AVSrc_64>;
def VOPProfileMAI_F64_4X4X4F64_VCD : VOPProfileMAI<VOP_F64_F64_F64_F64, VISrc_64_f64, VDst_64, AVSrc_64>;
def VOPProfileMAI_I32_I64_X16_VCD : VOPProfileMAI<VOP_V4I32_I64_I64_V4I32, VISrc_128_b32, VDst_128, AVSrc_64>;
def VOPProfileMAI_I32_I64_X32_VCD : VOPProfileMAI<VOP_V16I32_I64_I64_V16I32, VISrc_512_b32, VDst_512, AVSrc_64>;
def VOPProfileMAI_F32_V2F32_X16_VCD : VOPProfileMAI<VOP_V4F32_V2F32_V2F32_V4F32, VISrc_128_b32, VDst_128, AVSrc_64>;
def VOPProfileMAI_F32_V2F32_X32_VCD : VOPProfileMAI<VOP_V16F32_V2F32_V2F32_V16F32, VISrc_512_b32, VDst_512, AVSrc_64>;
def VOPProfileMAI_F32_I64_X32_VCD : VOPProfileMAI<VOP_V4F32_I64_I64_V4F32, VISrc_128_b32, VDst_128, AVSrc_64>;
def VOPProfileMAI_F32_I64_X16_VCD : VOPProfileMAI<VOP_V16F32_I64_I64_V16F32, VISrc_512_b32, VDst_512, AVSrc_64>;
def VOPProfileSMFMAC_F32_16X16X32_F16 : VOPProfileSMFMAC<VOP_V4F32_V4F16_V8F16_I32, AVDst_128, AVSrc_64, AVSrc_128>;
def VOPProfileSMFMAC_F32_32X32X16_F16 : VOPProfileSMFMAC<VOP_V16F32_V4F16_V8F16_I32, AVDst_512, AVSrc_64, AVSrc_128>;
def VOPProfileSMFMAC_F32_16X16X32_I16 : VOPProfileSMFMAC<VOP_V4F32_V4I16_V8I16_I32, AVDst_128, AVSrc_64, AVSrc_128>;
def VOPProfileSMFMAC_F32_32X32X16_I16 : VOPProfileSMFMAC<VOP_V16F32_V4I16_V8I16_I32, AVDst_512, AVSrc_64, AVSrc_128>;
def VOPProfileSMFMAC_I32_16X16X64_I8 : VOPProfileSMFMAC<VOP_V4I32_V2I32_V4I32_I32, AVDst_128, AVSrc_64, AVSrc_128>;
def VOPProfileSMFMAC_I32_32X32X32_I8 : VOPProfileSMFMAC<VOP_V16I32_V2I32_V4I32_I32, AVDst_512, AVSrc_64, AVSrc_128>;
def VOPProfileSMFMAC_F32_16X16X64_F8 : VOPProfileSMFMAC<VOP_V4F32_V2I32_V4I32_I32, AVDst_128, AVSrc_64, AVSrc_128>;
def VOPProfileSMFMAC_F32_32X32X32_F8 : VOPProfileSMFMAC<VOP_V16F32_V2I32_V4I32_I32, AVDst_512, AVSrc_64, AVSrc_128>;
class MFMATable <bit is_mac, string Name> {
bit IsMac = is_mac;
string FMAOp = Name;
}
class MAIFrag<SDPatternOperator Op, code pred> : PatFrag <
(ops node:$src0, node:$src1, node:$src2, node:$cbsz, node:$abid, node:$blgp),
(Op $src0, $src1, $src2, $cbsz, $abid, $blgp),
pred
>;
defvar MayNeedAGPRs = [{
return MF->getInfo<SIMachineFunctionInfo>()->mayNeedAGPRs();
}];
defvar MayNeedAGPRs_gisel = [{
return MF.getInfo<SIMachineFunctionInfo>()->mayNeedAGPRs();
}];
defvar MayNotNeedAGPRs = [{
return !MF->getInfo<SIMachineFunctionInfo>()->mayNeedAGPRs();
}];
defvar MayNotNeedAGPRs_gisel = [{
return !MF.getInfo<SIMachineFunctionInfo>()->mayNeedAGPRs();
}];
class AgprMAIFrag<SDPatternOperator Op> : MAIFrag<Op, MayNeedAGPRs> {
let GISelPredicateCode = MayNeedAGPRs_gisel;
}
class VgprMAIFrag<SDPatternOperator Op> : MAIFrag<Op, MayNotNeedAGPRs> {
let GISelPredicateCode = MayNotNeedAGPRs_gisel;
}
let SubtargetPredicate = HasMAIInsts in {
let isAsCheapAsAMove = 1, isReMaterializable = 1 in {
defm V_ACCVGPR_READ_B32 : VOP3Inst<"v_accvgpr_read_b32", VOPProfileAccRead>;
let isMoveImm = 1 in {
defm V_ACCVGPR_WRITE_B32 : VOP3Inst<"v_accvgpr_write_b32", VOPProfileAccWrite>;
} // End isMoveImm = 1
} // End isAsCheapAsAMove = 1, isReMaterializable = 1
class MAIInst<string OpName, VOPProfile P, SDPatternOperator node>
: VOP3InstBase<OpName, P, node> {
Instruction Opcode = !cast<Instruction>(NAME);
bit is_dgemm = 0;
bit is_gfx940_xdl = 0;
}
multiclass MAIInst<string OpName, string P, SDPatternOperator node> {
defvar NoDstOverlap = !cast<VOPProfileMAI>("VOPProfileMAI_" # P).NoDstOverlap;
let isConvergent = 1, mayRaiseFPException = 0, ReadsModeReg = 1 in {
// FP32 denorm mode is respected, rounding mode is not. Exceptions are not supported.
let Constraints = !if(NoDstOverlap, "@earlyclobber $vdst", "") in {
def _e64 : MAIInst<OpName, !cast<VOPProfileMAI>("VOPProfileMAI_" # P),
!if(!or(NoDstOverlap, !eq(node, null_frag)), null_frag, AgprMAIFrag<node>)>,
MFMATable<0, NAME # "_e64">;
let SubtargetPredicate = isGFX90APlus, Mnemonic = OpName in
def _vgprcd_e64 : MAIInst<OpName # "_vgprcd", !cast<VOPProfileMAI>("VOPProfileMAI_" # P # "_VCD"),
!if(!or(NoDstOverlap, !eq(node, null_frag)), null_frag, VgprMAIFrag<node>)>,
MFMATable<0, NAME # "_vgprcd_e64">;
}
if NoDstOverlap then {
let Constraints = !if(NoDstOverlap, "$vdst = $src2", ""),
isConvertibleToThreeAddress = NoDstOverlap,
Mnemonic = OpName in {
def "_mac_e64" : MAIInst<OpName # "_mac", !cast<VOPProfileMAI>("VOPProfileMAI_" # P),
!if(!eq(node, null_frag), null_frag, AgprMAIFrag<node>)>,
MFMATable<1, NAME # "_e64">;
let SubtargetPredicate = isGFX90APlus in
def _mac_vgprcd_e64 : MAIInst<OpName # "_mac_vgprcd", !cast<VOPProfileMAI>("VOPProfileMAI_" # P # "_VCD"),
!if(!eq(node, null_frag), null_frag, VgprMAIFrag<node>)>,
MFMATable<1, NAME # "_vgprcd_e64">;
}
}
} // End isConvergent = 1, mayRaiseFPException = 0, ReadsModeReg = 1
}
defm V_MFMA_F32_4X4X1F32 : MAIInst<"v_mfma_f32_4x4x1f32", "F32_F32_X4", int_amdgcn_mfma_f32_4x4x1f32>;
defm V_MFMA_F32_16X16X1F32 : MAIInst<"v_mfma_f32_16x16x1f32", "F32_F32_X16", int_amdgcn_mfma_f32_16x16x1f32>;
defm V_MFMA_F32_16X16X4F32 : MAIInst<"v_mfma_f32_16x16x4f32", "F32_F32_X4", int_amdgcn_mfma_f32_16x16x4f32>;
defm V_MFMA_F32_32X32X1F32 : MAIInst<"v_mfma_f32_32x32x1f32", "F32_F32_X32", int_amdgcn_mfma_f32_32x32x1f32>;
defm V_MFMA_F32_32X32X2F32 : MAIInst<"v_mfma_f32_32x32x2f32", "F32_F32_X16", int_amdgcn_mfma_f32_32x32x2f32>;
let is_gfx940_xdl = 1 in {
defm V_MFMA_F32_4X4X4F16 : MAIInst<"v_mfma_f32_4x4x4f16", "F32_V4F16_X4", int_amdgcn_mfma_f32_4x4x4f16>;
defm V_MFMA_I32_4X4X4I8 : MAIInst<"v_mfma_i32_4x4x4i8", "I32_I32_X4", int_amdgcn_mfma_i32_4x4x4i8>;
defm V_MFMA_F32_16X16X4F16 : MAIInst<"v_mfma_f32_16x16x4f16", "F32_V4F16_X16", int_amdgcn_mfma_f32_16x16x4f16>;
defm V_MFMA_F32_16X16X16F16 : MAIInst<"v_mfma_f32_16x16x16f16", "F32_V4F16_X4", int_amdgcn_mfma_f32_16x16x16f16>;
defm V_MFMA_I32_16X16X4I8 : MAIInst<"v_mfma_i32_16x16x4i8", "I32_I32_X16", int_amdgcn_mfma_i32_16x16x4i8>;
defm V_MFMA_F32_32X32X4F16 : MAIInst<"v_mfma_f32_32x32x4f16", "F32_V4F16_X32", int_amdgcn_mfma_f32_32x32x4f16>;
defm V_MFMA_F32_32X32X8F16 : MAIInst<"v_mfma_f32_32x32x8f16", "F32_V4F16_X16", int_amdgcn_mfma_f32_32x32x8f16>;
defm V_MFMA_I32_32X32X4I8 : MAIInst<"v_mfma_i32_32x32x4i8", "I32_I32_X32", int_amdgcn_mfma_i32_32x32x4i8>;
}
let Predicates = [isGFX908orGFX90A] in {
defm V_MFMA_I32_16X16X16I8 : MAIInst<"v_mfma_i32_16x16x16i8", "I32_I32_X4", int_amdgcn_mfma_i32_16x16x16i8>;
defm V_MFMA_I32_32X32X8I8 : MAIInst<"v_mfma_i32_32x32x8i8", "I32_I32_X16", int_amdgcn_mfma_i32_32x32x8i8>;
defm V_MFMA_F32_4X4X2BF16 : MAIInst<"v_mfma_f32_4x4x2bf16", "F32_V2I16_X4", int_amdgcn_mfma_f32_4x4x2bf16>;
defm V_MFMA_F32_16X16X2BF16 : MAIInst<"v_mfma_f32_16x16x2bf16", "F32_V2I16_X16", int_amdgcn_mfma_f32_16x16x2bf16>;
defm V_MFMA_F32_16X16X8BF16 : MAIInst<"v_mfma_f32_16x16x8bf16", "F32_V2I16_X4", int_amdgcn_mfma_f32_16x16x8bf16>;
defm V_MFMA_F32_32X32X2BF16 : MAIInst<"v_mfma_f32_32x32x2bf16", "F32_V2I16_X32", int_amdgcn_mfma_f32_32x32x2bf16>;
defm V_MFMA_F32_32X32X4BF16 : MAIInst<"v_mfma_f32_32x32x4bf16", "F32_V2I16_X16", int_amdgcn_mfma_f32_32x32x4bf16>;
}
} // End SubtargetPredicate = HasMAIInsts
let Predicates = [isGFX90APlus] in {
let is_gfx940_xdl = 1 in {
defm V_MFMA_F32_32X32X4BF16_1K : MAIInst<"v_mfma_f32_32x32x4bf16_1k", "F32_V4I16_X32", int_amdgcn_mfma_f32_32x32x4bf16_1k>;
defm V_MFMA_F32_16X16X4BF16_1K : MAIInst<"v_mfma_f32_16x16x4bf16_1k", "F32_V4I16_X16", int_amdgcn_mfma_f32_16x16x4bf16_1k>;
defm V_MFMA_F32_4X4X4BF16_1K : MAIInst<"v_mfma_f32_4x4x4bf16_1k", "F32_V4I16_X4", int_amdgcn_mfma_f32_4x4x4bf16_1k>;
defm V_MFMA_F32_32X32X8BF16_1K : MAIInst<"v_mfma_f32_32x32x8bf16_1k", "F32_V4I16_X16", int_amdgcn_mfma_f32_32x32x8bf16_1k>;
defm V_MFMA_F32_16X16X16BF16_1K : MAIInst<"v_mfma_f32_16x16x16bf16_1k", "F32_V4I16_X4", int_amdgcn_mfma_f32_16x16x16bf16_1k>;
}
let is_dgemm = 1 in {
defm V_MFMA_F64_16X16X4F64 : MAIInst<"v_mfma_f64_16x16x4f64", "F64_16X16X4F64", int_amdgcn_mfma_f64_16x16x4f64>;
defm V_MFMA_F64_4X4X4F64 : MAIInst<"v_mfma_f64_4x4x4f64", "F64_4X4X4F64", int_amdgcn_mfma_f64_4x4x4f64>;
}
} // End Predicates = [isGFX90APlus]
let SubtargetPredicate = isGFX940Plus, is_gfx940_xdl = 1 in {
defm V_MFMA_I32_32X32X16I8 : MAIInst<"v_mfma_i32_32x32x16i8", "I32_I64_X32", int_amdgcn_mfma_i32_32x32x16_i8>;
defm V_MFMA_I32_16X16X32I8 : MAIInst<"v_mfma_i32_16x16x32i8", "I32_I64_X16", int_amdgcn_mfma_i32_16x16x32_i8>;
defm V_MFMA_F32_16X16X8XF32 : MAIInst<"v_mfma_f32_16x16x8xf32", "F32_V2F32_X16", int_amdgcn_mfma_f32_16x16x8_xf32>;
defm V_MFMA_F32_32X32X4XF32 : MAIInst<"v_mfma_f32_32x32x4xf32", "F32_V2F32_X32", int_amdgcn_mfma_f32_32x32x4_xf32>;
defm V_MFMA_F32_16X16X32_BF8_BF8 : MAIInst<"v_mfma_f32_16x16x32_bf8_bf8", "F32_I64_X32", int_amdgcn_mfma_f32_16x16x32_bf8_bf8>;
defm V_MFMA_F32_16X16X32_BF8_FP8 : MAIInst<"v_mfma_f32_16x16x32_bf8_fp8", "F32_I64_X32", int_amdgcn_mfma_f32_16x16x32_bf8_fp8>;
defm V_MFMA_F32_16X16X32_FP8_BF8 : MAIInst<"v_mfma_f32_16x16x32_fp8_bf8", "F32_I64_X32", int_amdgcn_mfma_f32_16x16x32_fp8_bf8>;
defm V_MFMA_F32_16X16X32_FP8_FP8 : MAIInst<"v_mfma_f32_16x16x32_fp8_fp8", "F32_I64_X32", int_amdgcn_mfma_f32_16x16x32_fp8_fp8>;
defm V_MFMA_F32_32X32X16_BF8_BF8 : MAIInst<"v_mfma_f32_32x32x16_bf8_bf8", "F32_I64_X16", int_amdgcn_mfma_f32_32x32x16_bf8_bf8>;
defm V_MFMA_F32_32X32X16_BF8_FP8 : MAIInst<"v_mfma_f32_32x32x16_bf8_fp8", "F32_I64_X16", int_amdgcn_mfma_f32_32x32x16_bf8_fp8>;
defm V_MFMA_F32_32X32X16_FP8_BF8 : MAIInst<"v_mfma_f32_32x32x16_fp8_bf8", "F32_I64_X16", int_amdgcn_mfma_f32_32x32x16_fp8_bf8>;
defm V_MFMA_F32_32X32X16_FP8_FP8 : MAIInst<"v_mfma_f32_32x32x16_fp8_fp8", "F32_I64_X16", int_amdgcn_mfma_f32_32x32x16_fp8_fp8>;
} // End SubtargetPredicate = isGFX940Plus, is_gfx940_xdl = 1
multiclass SMFMACInst<string OpName, string P, SDPatternOperator node> {
let Constraints = "$vdst = $src2", DisableEncoding = "$src2",
isConvergent = 1, mayRaiseFPException = 0, ReadsModeReg = 1, is_gfx940_xdl = 1 in {
def _e64 : MAIInst<OpName, !cast<VOPProfileSMFMAC>("VOPProfileSMFMAC_" # P), node>;
}
}
let SubtargetPredicate = isGFX940Plus in {
defm V_SMFMAC_F32_16X16X32_F16 : SMFMACInst<"v_smfmac_f32_16x16x32_f16", "F32_16X16X32_F16", int_amdgcn_smfmac_f32_16x16x32_f16>;
defm V_SMFMAC_F32_32X32X16_F16 : SMFMACInst<"v_smfmac_f32_32x32x16_f16", "F32_32X32X16_F16", int_amdgcn_smfmac_f32_32x32x16_f16>;
defm V_SMFMAC_F32_16X16X32_BF16 : SMFMACInst<"v_smfmac_f32_16x16x32_bf16", "F32_16X16X32_I16", int_amdgcn_smfmac_f32_16x16x32_bf16>;
defm V_SMFMAC_F32_32X32X16_BF16 : SMFMACInst<"v_smfmac_f32_32x32x16_bf16", "F32_32X32X16_I16", int_amdgcn_smfmac_f32_32x32x16_bf16>;
defm V_SMFMAC_I32_16X16X64_I8 : SMFMACInst<"v_smfmac_i32_16x16x64_i8", "I32_16X16X64_I8", int_amdgcn_smfmac_i32_16x16x64_i8>;
defm V_SMFMAC_I32_32X32X32_I8 : SMFMACInst<"v_smfmac_i32_32x32x32_i8", "I32_32X32X32_I8", int_amdgcn_smfmac_i32_32x32x32_i8>;
defm V_SMFMAC_F32_16X16X64_BF8_BF8 : SMFMACInst<"v_smfmac_f32_16x16x64_bf8_bf8", "F32_16X16X64_F8", int_amdgcn_smfmac_f32_16x16x64_bf8_bf8>;
defm V_SMFMAC_F32_16X16X64_BF8_FP8 : SMFMACInst<"v_smfmac_f32_16x16x64_bf8_fp8", "F32_16X16X64_F8", int_amdgcn_smfmac_f32_16x16x64_bf8_fp8>;
defm V_SMFMAC_F32_16X16X64_FP8_BF8 : SMFMACInst<"v_smfmac_f32_16x16x64_fp8_bf8", "F32_16X16X64_F8", int_amdgcn_smfmac_f32_16x16x64_fp8_bf8>;
defm V_SMFMAC_F32_16X16X64_FP8_FP8 : SMFMACInst<"v_smfmac_f32_16x16x64_fp8_fp8", "F32_16X16X64_F8", int_amdgcn_smfmac_f32_16x16x64_fp8_fp8>;
defm V_SMFMAC_F32_32X32X32_BF8_BF8 : SMFMACInst<"v_smfmac_f32_32x32x32_bf8_bf8", "F32_32X32X32_F8", int_amdgcn_smfmac_f32_32x32x32_bf8_bf8>;
defm V_SMFMAC_F32_32X32X32_BF8_FP8 : SMFMACInst<"v_smfmac_f32_32x32x32_bf8_fp8", "F32_32X32X32_F8", int_amdgcn_smfmac_f32_32x32x32_bf8_fp8>;
defm V_SMFMAC_F32_32X32X32_FP8_BF8 : SMFMACInst<"v_smfmac_f32_32x32x32_fp8_bf8", "F32_32X32X32_F8", int_amdgcn_smfmac_f32_32x32x32_fp8_bf8>;
defm V_SMFMAC_F32_32X32X32_FP8_FP8 : SMFMACInst<"v_smfmac_f32_32x32x32_fp8_fp8", "F32_32X32X32_F8", int_amdgcn_smfmac_f32_32x32x32_fp8_fp8>;
}
def MAIInstInfoTable : GenericTable {
let FilterClass = "MAIInst";
let CppTypeName = "MAIInstInfo";
let Fields = [
"Opcode", "is_dgemm", "is_gfx940_xdl"
];
let PrimaryKey = ["Opcode"];
let PrimaryKeyName = "getMAIInstInfoHelper";
}
let isCommutable = 1, isReMaterializable = 1 in {
let SubtargetPredicate = HasPackedFP32Ops in {
defm V_PK_FMA_F32 : VOP3PInst<"v_pk_fma_f32", VOP3P_Profile<VOP_V2F32_V2F32_V2F32_V2F32, VOP3_PACKED>, any_fma>;
defm V_PK_MUL_F32 : VOP3PInst<"v_pk_mul_f32", VOP3P_Profile<VOP_V2F32_V2F32_V2F32, VOP3_PACKED>, any_fmul>;
defm V_PK_ADD_F32 : VOP3PInst<"v_pk_add_f32", VOP3P_Profile<VOP_V2F32_V2F32_V2F32, VOP3_PACKED>, any_fadd>;
} // End SubtargetPredicate = HasPackedFP32Ops
let SubtargetPredicate = HasPkMovB32 in
defm V_PK_MOV_B32 : VOP3PInst<"v_pk_mov_b32", VOP3P_Profile<VOP_V2I32_V2I32_V2I32, VOP3_PACKED>>;
} // End isCommutable = 1, isReMaterializable = 1
def : AMDGPUMnemonicAlias<"v_accvgpr_read", "v_accvgpr_read_b32">;
def : AMDGPUMnemonicAlias<"v_accvgpr_write", "v_accvgpr_write_b32">;
class VOPProfileWMMA<VOPProfile P, string Suffix, RegisterOperand _Src01RC64, bit _HasClamp, bit _HasOpSel> : VOP3P_Profile<P> {
let DstRC = !if(!eq(Suffix, "_w32"), VDst_256, VDst_128);
let Src0RC64 = _Src01RC64;
let Src1RC64 = _Src01RC64;
let Src2RC64 = !if(!eq(Suffix, "_w32"), VISrc_256_f64, VISrc_128_f32);
let HasClamp = _HasClamp;
let HasOpSel = _HasOpSel;
let IsPacked = 1;
let IsWMMA = 1;
}
def VOP_V8F32_V16F16_V16F16_V8F32 : VOPProfile <[v8f32, v16f16, v16f16, v8f32]>;
def VOP_V8F32_V16I16_V16I16_V8F32 : VOPProfile <[v8f32, v16i16, v16i16, v8f32]>;
def VOP_V16F16_V16F16_V16F16_V16F16 : VOPProfile <[v16f16, v16f16, v16f16, v16f16]>;
def VOP_V16I16_V16I16_V16I16_V16I16 : VOPProfile <[v16i16, v16i16, v16i16, v16i16]>;
def VOP_V8I32_V4I32_V4I32_V8I32 : VOPProfile <[v8i32, v4i32, v4i32, v8i32]>;
def VOP_V8I32_V2I32_V2I32_V8I32 : VOPProfile <[v8i32, v2i32, v2i32, v8i32]>;
def VOP_V4F32_V16F16_V16F16_V4F32 : VOPProfile <[v4f32, v16f16, v16f16, v4f32]>;
def VOP_V4F32_V16I16_V16I16_V4F32 : VOPProfile <[v4f32, v16i16, v16i16, v4f32]>;
def VOP_V8F16_V16F16_V16F16_V8F16 : VOPProfile <[v8f16, v16f16, v16f16, v8f16]>;
def VOP_V8I16_V16I16_V16I16_V8I16 : VOPProfile <[v8i16, v16i16, v16i16, v8i16]>;
def VOP_V4I32_V4I32_V4I32_V4I32 : VOPProfile <[v4i32, v4i32, v4i32, v4i32]>;
def VOP_V4I32_V2I32_V2I32_V4I32 : VOPProfile <[v4i32, v2i32, v2i32, v4i32]>;
class WMMAType <bits<2> val> {
bit hasClamp = val{0};
bit hasOpsel = val{1};
}
def WMMARegular : WMMAType<0b00>;
def WMMAUIClamp : WMMAType<0b01>;
def WMMAOpSel : WMMAType<0b10>;
class WMMARegularPat<Instruction Inst, SDPatternOperator node, VOPProfile P> :
GCNPat < (P.DstVT (node
(P.Src0VT (VOP3PMods P.Src0VT:$src0, i32:$src0_modifiers)),
(P.Src1VT (VOP3PMods P.Src1VT:$src1, i32:$src1_modifiers)),
(P.Src2VT (VOP3PMods P.Src2VT:$src2, i32:$src2_modifiers))
)),
(P.DstVT (Inst i32:$src0_modifiers, P.Src0VT:$src0, i32:$src1_modifiers, P.Src1VT:$src1, $src2_modifiers, P.Src2VT:$src2))
>;
class WMMAOpSelPat<Instruction Inst, SDPatternOperator node, VOPProfile P> :
GCNPat < (P.DstVT (node
(P.Src0VT P.Src0VT:$src0),
(P.Src1VT P.Src1VT:$src1),
(P.Src2VT P.Src2VT:$src2), (WMMAOpSelVOP3PMods i32:$src2_modifiers)
)),
(P.DstVT (Inst (i32 8), P.Src0VT:$src0, (i32 8), P.Src1VT:$src1, i32:$src2_modifiers, P.Src2VT:$src2))
>;
class WMMAUIClampPat<Instruction Inst, SDPatternOperator node, VOPProfile P> :
GCNPat < (P.DstVT (node
(VOP3PModsNeg i32:$src0_modifiers), (P.Src0VT P.Src0VT:$src0),
(VOP3PModsNeg i32:$src1_modifiers), (P.Src1VT P.Src1VT:$src1),
(P.Src2VT P.Src2VT:$src2), (i1 timm:$clamp)
)),
(P.DstVT (Inst i32:$src0_modifiers, P.Src0VT:$src0, i32:$src1_modifiers, P.Src1VT:$src1, (i32 8), P.Src2VT:$src2, i1:$clamp))
>;
class WMMAOpcodeMapping<Instruction TwoAddr, Instruction ThreeAddr> {
Instruction Opcode2Addr = TwoAddr;
Instruction Opcode3Addr = ThreeAddr;
Predicate WaveSizePredicate;
}
def WMMAOpcode : GenericEnum {
let FilterClass = "VOP3P_Pseudo";
}
class WMMAMappingTable : GenericTable {
let FilterClass = "WMMAOpcodeMapping";
let CppTypeName = "WMMAOpcodeMappingInfo";
let Fields = ["Opcode2Addr", "Opcode3Addr"];
string TypeOf_Opcode2Addr = "WMMAOpcode";
string TypeOf_Opcode3Addr = "WMMAOpcode";
}
def WMMAOpcode2AddrMappingTable : WMMAMappingTable {
let PrimaryKey = ["Opcode2Addr"];
let PrimaryKeyName = "getWMMAMappingInfoFrom2AddrOpcode";
}
def WMMAOpcode3AddrMappingTable : WMMAMappingTable {
let PrimaryKey = ["Opcode3Addr"];
let PrimaryKeyName = "getWMMAMappingInfoFrom3AddrOpcode";
}
// The WMMA instruction has extra constraints:
// Matrices A and B cannot overlap with D. C cannot partially overlap with D,
// but it is OK for them to be the same (which is a typical case).
//
// We implement it as follows:
// 1) Map the intrinsic to the pseudo where D is tied to C ($vdst = $src2).
// 2) The pass twoaddressinstruction checks if src2 is live and if that is the case
// it converts the default pseudo to the pseudo where src2 is not the same as vdst.
// 3) @earlyclobber on the destination satisfies the constraint during RA.
multiclass WMMAInst<string Suffix, string Instr, VOPProfile P, SDPatternOperator node = null_frag, RegisterOperand _Src01RC64 = VRegSrc_256, WMMAType Type, bit convertibleTo3Addr> {
defvar WMMAConstraints2Addr = "@earlyclobber $vdst,$vdst = $src2";
defvar WMMAConstraints3Addr = "@earlyclobber $vdst";
defvar WMMAProfile = VOPProfileWMMA<P, Suffix, _Src01RC64, Type.hasClamp, Type.hasOpsel>;
let Mnemonic = Instr, mayRaiseFPException = 0, ReadsModeReg = 0 in {
let Constraints = WMMAConstraints2Addr, isConvertibleToThreeAddress = convertibleTo3Addr in {
def _twoaddr # Suffix : VOP3P_Pseudo<Instr # Suffix, WMMAProfile>;
}
}
if convertibleTo3Addr then {
let Mnemonic = Instr, mayRaiseFPException = 0, ReadsModeReg = 0 in {
let Constraints = WMMAConstraints3Addr, SchedRW = [Write32Bit, Write32Bit] in {
def _threeaddr # Suffix : VOP3P_Pseudo<Instr # Suffix, WMMAProfile>;
}
}
def : WMMAOpcodeMapping<!cast<Instruction>(NAME # _twoaddr # Suffix),
!cast<Instruction>(NAME # _threeaddr # Suffix)>;
}
let SubtargetPredicate = isGFX11Only in {
if !eq(Type, WMMAOpSel) then {
def : WMMAOpSelPat<!cast<Instruction>(NAME # _twoaddr # Suffix), node, P>;
} else if !eq(Type, WMMAUIClamp) then {
def : WMMAUIClampPat<!cast<Instruction>(NAME # _twoaddr # Suffix), node, P>;
} else {
def : WMMARegularPat<!cast<Instruction>(NAME # _twoaddr # Suffix), node, P>;
}
}
}
let WaveSizePredicate = isWave32 in {
defm V_WMMA_F32_16X16X16_F16 : WMMAInst<"_w32", "v_wmma_f32_16x16x16_f16", VOP_V8F32_V16F16_V16F16_V8F32, int_amdgcn_wmma_f32_16x16x16_f16, VRegSrc_256, WMMARegular, 1>;
defm V_WMMA_F32_16X16X16_BF16 : WMMAInst<"_w32", "v_wmma_f32_16x16x16_bf16", VOP_V8F32_V16I16_V16I16_V8F32, int_amdgcn_wmma_f32_16x16x16_bf16, VRegSrc_256, WMMARegular, 1>;
defm V_WMMA_F16_16X16X16_F16 : WMMAInst<"_w32", "v_wmma_f16_16x16x16_f16", VOP_V16F16_V16F16_V16F16_V16F16, int_amdgcn_wmma_f16_16x16x16_f16, VRegSrc_256, WMMAOpSel, 1>;
defm V_WMMA_BF16_16X16X16_BF16 : WMMAInst<"_w32", "v_wmma_bf16_16x16x16_bf16", VOP_V16I16_V16I16_V16I16_V16I16, int_amdgcn_wmma_bf16_16x16x16_bf16, VRegSrc_256, WMMAOpSel, 1>;
defm V_WMMA_F16_16X16X16_F16_TIED : WMMAInst<"_w32", "v_wmma_f16_16x16x16_f16", VOP_V16F16_V16F16_V16F16_V16F16, int_amdgcn_wmma_f16_16x16x16_f16_tied, VRegSrc_256, WMMAOpSel, 0>;
defm V_WMMA_BF16_16X16X16_BF16_TIED : WMMAInst<"_w32", "v_wmma_bf16_16x16x16_bf16", VOP_V16I16_V16I16_V16I16_V16I16, int_amdgcn_wmma_bf16_16x16x16_bf16_tied, VRegSrc_256, WMMAOpSel, 0>;
defm V_WMMA_I32_16X16X16_IU8 : WMMAInst<"_w32", "v_wmma_i32_16x16x16_iu8", VOP_V8I32_V4I32_V4I32_V8I32, int_amdgcn_wmma_i32_16x16x16_iu8, VRegSrc_128, WMMAUIClamp, 1>;
defm V_WMMA_I32_16X16X16_IU4 : WMMAInst<"_w32", "v_wmma_i32_16x16x16_iu4", VOP_V8I32_V2I32_V2I32_V8I32, int_amdgcn_wmma_i32_16x16x16_iu4, VRegSrc_64, WMMAUIClamp, 1>;
}
let WaveSizePredicate = isWave64 in {
defm V_WMMA_F32_16X16X16_F16 : WMMAInst<"_w64", "v_wmma_f32_16x16x16_f16", VOP_V4F32_V16F16_V16F16_V4F32, int_amdgcn_wmma_f32_16x16x16_f16, VRegSrc_256, WMMARegular, 1>;
defm V_WMMA_F32_16X16X16_BF16 : WMMAInst<"_w64", "v_wmma_f32_16x16x16_bf16", VOP_V4F32_V16I16_V16I16_V4F32, int_amdgcn_wmma_f32_16x16x16_bf16, VRegSrc_256, WMMARegular, 1>;
defm V_WMMA_F16_16X16X16_F16 : WMMAInst<"_w64", "v_wmma_f16_16x16x16_f16", VOP_V8F16_V16F16_V16F16_V8F16, int_amdgcn_wmma_f16_16x16x16_f16, VRegSrc_256, WMMAOpSel, 1>;
defm V_WMMA_BF16_16X16X16_BF16 : WMMAInst<"_w64", "v_wmma_bf16_16x16x16_bf16", VOP_V8I16_V16I16_V16I16_V8I16, int_amdgcn_wmma_bf16_16x16x16_bf16, VRegSrc_256, WMMAOpSel, 1>;
defm V_WMMA_F16_16X16X16_F16_TIED : WMMAInst<"_w64", "v_wmma_f16_16x16x16_f16", VOP_V8F16_V16F16_V16F16_V8F16, int_amdgcn_wmma_f16_16x16x16_f16_tied, VRegSrc_256, WMMAOpSel, 0>;
defm V_WMMA_BF16_16X16X16_BF16_TIED : WMMAInst<"_w64", "v_wmma_bf16_16x16x16_bf16", VOP_V8I16_V16I16_V16I16_V8I16, int_amdgcn_wmma_bf16_16x16x16_bf16_tied, VRegSrc_256, WMMAOpSel, 0>;
defm V_WMMA_I32_16X16X16_IU8 : WMMAInst<"_w64", "v_wmma_i32_16x16x16_iu8", VOP_V4I32_V4I32_V4I32_V4I32, int_amdgcn_wmma_i32_16x16x16_iu8, VRegSrc_128, WMMAUIClamp, 1>;
defm V_WMMA_I32_16X16X16_IU4 : WMMAInst<"_w64", "v_wmma_i32_16x16x16_iu4", VOP_V4I32_V2I32_V2I32_V4I32, int_amdgcn_wmma_i32_16x16x16_iu4, VRegSrc_64, WMMAUIClamp, 1>;
}
class VOP3PWMMA_Profile<list<ValueType> ArgTy, bit _IsSWMMAC, int _IndexType,
bit _IsIU, bit _IsFP8BF8>
: VOP3P_Profile<VOPProfile<ArgTy>> {
bit IsIU = _IsIU;
bit IsFP8BF8 = _IsFP8BF8;
bit IsF16BF16 = !not(!or(IsIU, IsFP8BF8));
int IndexType = _IndexType;
let IsPacked = 1;
let IsWMMA = !not(_IsSWMMAC);
let IsSWMMAC = _IsSWMMAC;
bit IsAB_F16 = !and(IsF16BF16, ArgTy[1].isFP);
bit IsAB_BF16 = !and(IsF16BF16, isIntType<ArgTy[1]>.ret);
bit IsC_F32 = !or(!eq(ArgTy[3], v8f32), !eq(ArgTy[3], v4f32));
bit IsC_BF16 = !or(!eq(ArgTy[3], v8i16), !eq(ArgTy[3], v4i16));
bit IsC_F16 = !or(!eq(ArgTy[3], v8f16), !eq(ArgTy[3], v4f16));
bit NegLo01 = !or(IsF16BF16, IsIU);
bit NegLo2 = !and(!or(IsF16BF16, IsFP8BF8), IsWMMA);
bit NegHi01 = IsF16BF16;
bit NegHi2 = !and(!or(IsF16BF16, IsFP8BF8), IsWMMA);
bit NegLoAny = !or(NegLo01, NegLo2);
bit NegHiAny = !or(NegHi01, NegHi2);
let DstRC = !cast<RegisterOperand>("VDst_"#ArgTy[0].Size);
let Src0RC64 = !cast<RegisterOperand>("VRegSrc_"#ArgTy[1].Size);
let Src1RC64 = !cast<RegisterOperand>("VRegSrc_"#ArgTy[2].Size);
let Src2RC64 = !if(IsSWMMAC, DstRC,
!cast<RegisterOperand>("VISrc_"#ArgTy[3].Size#
!cond(IsC_F32: "_f32",
IsC_F16: "_f16",
IsC_BF16: "_bf16",
1: "_b32")));
// For f16 and bf16 matrices A and B, each element can be modified by
// fneg(neg_lo,neg_hi = 1). For iu4 and iu8 matrices A and B neg_lo is
// overloaded to mean unsigned/signed: neg_lo = 0 (u4 and u8) unsigned(zext)
// neg_lo = 1 (i4 and i8) signed(sext). For f16, bf16 and f32 matrix C each
// element can be modified by fneg(neg_lo = 1) or fabs(neg_hi = 1).
// Opcode | src0/src1 - matrix A/B | src2 - matrix C or Index
// ---------------------------------------------------------------------------
// wmma f32_f16 | both neg_lo,neg_hi = 1 | neg_lo = 1 neg C(f32)
// wmma f32_bf16 | neg A/B (f16 or bf16) | neg_hi = 1 abs C(f32)
// ---------------------------------------------------------------------------
// wmma f16_f16 | both neg_lo,neg_hi = 1 | neg_lo = 1 neg C(f16 or bf16)
// wmma bf16_bf16 | neg A/B (f16 or bf16) | neg_hi = 1 abs C(f16 or bf16)
// ---------------------------------------------------------------------------
// wmma i32_iu8/iu4 | neg_lo = 0 u4/u8(zext) | not allowed for
// | neg_lo = 1 i4/i8(sext) | i32 matrices
// ---------------------------------------------------------------------------
// wmma f32_fp8/bf8 | not allowed for | neg_lo = 1 neg C(f32)
// (4 instructions) | f8 and bf8 matrices | neg_hi = 1 abs C(f32)
// ---------------------------------------------------------------------------
// swmmac f32_f16 | both neg_lo,neg_hi = 1 | not allowed for sparse matrix
// swmmac f32_bf16 | neg A/B (f16 or bf16) | A Index - matrix C is in dst
// ---------------------------------------------------------------------------
// swmmac f16_f16 | both neg_lo,neg_hi = 1 | not allowed for sparse matrix
// swmmac bf16_bf16 | neg A/B (f16 or bf16) | A Index - matrix C is in dst
// ---------------------------------------------------------------------------
// swmmac i32_iu8/iu4 | neg_lo = 0 u4/u8(zext) | not allowed for sparse matrix
// | neg_lo = 1 i4/i8(sext) | A Index - matrix C is in dst
// ---------------------------------------------------------------------------
// swmmac f32_fp8/bf8 | not allowed for | not allowed for sparse matrix
// (4 instructions) | f8 and bf8 matrices | A Index - matrix C is in dst
// pseudo
// fp8bf8 wmmas don't use src (0 and 1) modifiers, iu use neg_lo, f16 and bf16
// use neg_lo and neg_hi. iu wmmas (C is i32) don't use src 2 modifiers,
// remaining wmmas(f16, bf16 and f8bf8) use neg_lo and neg_hi for C (C is f32
// f16 or bf16). swmmac use index_key and don't use src 2 modifiers.
dag Src0Mods = !if(IsFP8BF8, (ins), (ins PackedF16InputMods:$src0_modifiers));
dag Src1Mods = !if(IsFP8BF8, (ins), (ins PackedF16InputMods:$src1_modifiers));
dag Src2Mods = !if(IsIU, (ins), (ins PackedF16InputMods:$src2_modifiers));
dag IndexKey = !cond(!eq(IndexType, 0) : (ins),
!eq(IndexType, 8) : (ins IndexKey8bit:$index_key_8bit),
!eq(IndexType, 16): (ins IndexKey16bit:$index_key_16bit));
dag Clamp = !if(IsIU, (ins Clamp0:$clamp), (ins));
dag Neg = !cond(!and(NegLoAny, NegHiAny) : (ins neg_lo0:$neg_lo, neg_hi0:$neg_hi),
!and(NegLoAny, !not(NegHiAny)) : (ins neg_lo0:$neg_lo),
!and(!not(NegLoAny), !not(NegHiAny)) : (ins));
let InsVOP3P = !con(Src0Mods, (ins Src0RC64:$src0), Src1Mods, (ins Src1RC64:$src1),
!cond(IsWMMA : !con(Src2Mods, (ins Src2RC64:$src2)),
IsSWMMAC : !con((ins DstRC:$srcTiedDef), (ins VRegSrc_32:$src2), IndexKey)),
Clamp, Neg);
// asm
string IndexKeyAsm = !cond(!eq(IndexType, 0) : "",
!eq(IndexType, 8) : "$index_key_8bit",
!eq(IndexType, 16) : "$index_key_16bit");
string ClampAsm = !if(IsIU, "$clamp", "");
string NegAsm = !cond(!and(NegLoAny, NegHiAny) : "$neg_lo$neg_hi",
!and(NegLoAny, !not(NegHiAny)) : "$neg_lo",
!and(!not(NegLoAny), !not(NegHiAny)) : "");
let AsmVOP3P = "$vdst, $src0, $src1, $src2"#IndexKeyAsm#NegAsm#ClampAsm;
// isel patterns
dag Src0InPat = !cond(IsAB_F16 : (ins (Src0VT (WMMAModsF16Neg Src0VT:$src0, i32:$src0_modifiers))),
IsAB_BF16 : (ins Src0VT:$src0),
IsIU : (ins (VOP3PModsNeg i32:$src0_modifiers), Src0VT:$src0),
IsFP8BF8 : (ins Src0VT:$src0));
dag Src0OutPat = !cond(IsAB_F16 : (ins i32:$src0_modifiers, Src0VT:$src0),
IsAB_BF16 : (ins (i32 8), Src0VT:$src0),
IsIU : (ins i32:$src0_modifiers, Src0VT:$src0),
IsFP8BF8 : (ins Src0VT:$src0));
dag Src1InPat = !cond(IsAB_F16 : (ins (Src1VT (WMMAModsF16Neg Src1VT:$src1, i32:$src1_modifiers))),
IsAB_BF16 : (ins Src1VT:$src1),
IsIU : (ins (VOP3PModsNeg i32:$src1_modifiers), Src1VT:$src1),
IsFP8BF8 : (ins Src1VT:$src1));
dag Src1OutPat = !cond(IsAB_F16 : (ins i32:$src1_modifiers, Src1VT:$src1),
IsAB_BF16 : (ins (i32 8), Src1VT:$src1),
IsIU : (ins i32:$src1_modifiers, Src1VT:$src1),
IsFP8BF8 : (ins Src1VT:$src1));
dag Src2InPatWmma = !cond(IsC_F32 : (ins (Src2VT (WMMAModsF32NegAbs Src2VT:$src2, i32:$src2_modifiers))),
IsC_F16 : (ins (Src2VT (WMMAModsF16NegAbs Src2VT:$src2, i32:$src2_modifiers))),
IsC_BF16 : (ins Src2VT:$src2),
IsIU : (ins Src2VT:$src2),
IsSWMMAC : (ins));
dag Src2OutPatWmma = !cond(IsC_F32 : (ins i32:$src2_modifiers, Src2VT:$src2),
IsC_F16 : (ins i32:$src2_modifiers, Src2VT:$src2),
IsC_BF16 : (ins (i32 8), Src2VT:$src2),
IsIU : (ins Src2VT:$src2),
IsSWMMAC : (ins));
dag ClampPat = !if(IsIU, (ins i1:$clamp), (ins));
dag IndexInPat = !cond(!eq(IndexType, 0) : (ins i32:$src2),
!eq(IndexType, 8) : (ins (i32 (SWMMACIndex8 i32:$src2, i32:$index_key_8bit))),
!eq(IndexType, 16): (ins (i32 (SWMMACIndex16 i32:$src2, i32:$index_key_16bit))));
dag IndexOutPat = !cond(!eq(IndexType, 0) : (ins i32:$src2),
!eq(IndexType, 8) : (ins i32:$src2, i32:$index_key_8bit),
!eq(IndexType, 16): (ins i32:$src2, i32:$index_key_16bit));
dag Src2InlineInPat = (ins (Src2VT (WMMAVISrc Src2VT:$src2)));
dag Src2InlineOutPat = !con(!if(IsIU, (ins), (ins (i32 8))), (ins Src2VT:$src2));
dag WmmaInPat = !con(Src0InPat, Src1InPat, Src2InPatWmma, ClampPat);
dag WmmaOutPat = !con(Src0OutPat, Src1OutPat, Src2OutPatWmma, ClampPat);
dag SwmmacInPat = !con(Src0InPat, Src1InPat, (ins Src2VT:$srcTiedDef), IndexInPat, ClampPat);
dag SwmmacOutPat = !con(Src0OutPat, Src1OutPat, (ins Src2VT:$srcTiedDef), IndexOutPat, ClampPat);
// wmma pattern where src2 is inline imm uses _threeaddr pseudo,
// can't use _twoaddr since it would violate src2 tied to vdst constraint.
dag WmmaInlineInPat = !con(Src0InPat, Src1InPat, Src2InlineInPat, ClampPat);
dag WmmaInlineOutPat = !con(Src0OutPat, Src1OutPat, Src2InlineOutPat, ClampPat);
}
multiclass WMMAInstGFX12<string Instr, VOP3PWMMA_Profile WMMAProfile, string PseudoInstrSuffix> {
let Mnemonic = Instr, mayRaiseFPException = 0, ReadsModeReg = 0 in {
let Constraints = "@earlyclobber $vdst,$vdst = $src2", isConvertibleToThreeAddress = 1 in
def _twoaddr : VOP3P_Pseudo<Instr, WMMAProfile>{
let PseudoInstr = Instr#PseudoInstrSuffix;
}
let Constraints = "@earlyclobber $vdst", SchedRW = [Write32Bit, Write32Bit] in
def _threeaddr : VOP3P_Pseudo<Instr, WMMAProfile>{
let PseudoInstr = Instr#PseudoInstrSuffix;
}
}
def : WMMAOpcodeMapping<!cast<Instruction>(NAME # _twoaddr),
!cast<Instruction>(NAME # _threeaddr)>;
}
multiclass SWMMACInstGFX12<string Instr, VOP3PWMMA_Profile WMMAProfile, string PseudoInstrSuffix> {
def _twoaddr : VOP3P_Pseudo<Instr, WMMAProfile>{
let Mnemonic = Instr;
let PseudoInstr = Instr#PseudoInstrSuffix;
let mayRaiseFPException = 0;
let ReadsModeReg = 0;
let AsmMatchConverter = "cvtSWMMAC";
let Constraints = "@earlyclobber $vdst,$vdst = $srcTiedDef";
}
}
// First argument in Profile is types for matrices D, A, B and C (D = A * B + C)
// as used by llvm ir, types are vectors(with matrix elements)
// wave32:
// For 16x16 matrices, lanes 0 to 31 will have 8 matrix elts,
// for 16 x 32 16 elts and for 16 x 64 lanes have 32 elts.
// wave64:
// lanes will have half the size of elements in lanes compared to wave32 with
// exception of 16x16_iu4: lanes0-31 will have 8xi4, remaining lanes are ignored
// general idea on element distribution differences:
// wave32: lane n has 8 matrix elements
// wave64: lane n has first 4, lane n+32 has other 4 elements
// index size, for each 2 elements in lane you need 4bits in index
// Non-standard types (iu8, iu4, fp8, bf8) will be packed in vectors of i32s.
// Original type for them is in comment on the right and refers to A and B.
def F32_F16_WMMA_w32 : VOP3PWMMA_Profile<[v8f32, v8f16, v8f16, v8f32], 0, 0, 0, 0>;
def F32_BF16_WMMA_w32 : VOP3PWMMA_Profile<[v8f32, v8i16, v8i16, v8f32], 0, 0, 0, 0>;
def F16_F16_WMMA_w32 : VOP3PWMMA_Profile<[v8f16, v8f16, v8f16, v8f16], 0, 0, 0, 0>;
def BF16_BF16_WMMA_w32 : VOP3PWMMA_Profile<[v8i16, v8i16, v8i16, v8i16], 0, 0, 0, 0>;
def I32_IU8_WMMA_w32 : VOP3PWMMA_Profile<[v8i32, v2i32, v2i32, v8i32], 0, 0, 1, 0>; // 8xi8
def I32_IU4X16_WMMA_w32 : VOP3PWMMA_Profile<[v8i32, i32, i32, v8i32], 0, 0, 1, 0>; // 8xi4
def F32_FP8BF8_WMMA_w32 : VOP3PWMMA_Profile<[v8f32, v2i32, v2i32, v8f32], 0, 0, 0, 1>; // 8xf8
def I32_IU4X32_WMMA_w32 : VOP3PWMMA_Profile<[v8i32, v2i32, v2i32, v8i32], 0, 0, 1, 0>; // 16xi4
def F32_F16_WMMA_w64 : VOP3PWMMA_Profile<[v4f32, v4f16, v4f16, v4f32], 0, 0, 0, 0>;
def F32_BF16_WMMA_w64 : VOP3PWMMA_Profile<[v4f32, v4i16, v4i16, v4f32], 0, 0, 0, 0>;
def F16_F16_WMMA_w64 : VOP3PWMMA_Profile<[v4f16, v4f16, v4f16, v4f16], 0, 0, 0, 0>;
def BF16_BF16_WMMA_w64 : VOP3PWMMA_Profile<[v4i16, v4i16, v4i16, v4i16], 0, 0, 0, 0>;
def I32_IU8_WMMA_w64 : VOP3PWMMA_Profile<[v4i32, i32, i32, v4i32], 0, 0, 1, 0>; // 4xi8
def I32_IU4X16_WMMA_w64 : VOP3PWMMA_Profile<[v4i32, i32, i32, v4i32], 0, 0, 1, 0>; // 8xi4 *
def F32_FP8BF8_WMMA_w64 : VOP3PWMMA_Profile<[v4f32, i32, i32, v4f32], 0, 0, 0, 1>; // 4xf8
def I32_IU4X32_WMMA_w64 : VOP3PWMMA_Profile<[v4i32, i32, i32, v4i32], 0, 0, 1, 0>; // 8xi4
def F32_F16_SWMMAC_w32 : VOP3PWMMA_Profile<[v8f32, v8f16, v16f16, v8f32], 1, 16, 0, 0>;
def F32_BF16_SWMMAC_w32 : VOP3PWMMA_Profile<[v8f32, v8i16, v16i16, v8f32], 1, 16, 0, 0>;
def F16_F16_SWMMAC_w32 : VOP3PWMMA_Profile<[v8f16, v8f16, v16f16, v8f16], 1, 16, 0, 0>;
def BF16_BF16_SWMMAC_w32 : VOP3PWMMA_Profile<[v8i16, v8i16, v16i16, v8i16], 1, 16, 0, 0>;
def I32_IU8_SWMMAC_w32 : VOP3PWMMA_Profile<[v8i32, v2i32, v4i32, v8i32], 1, 16, 1, 0>; // 8xi8, 16xi8
def I32_IU4X32_SWMMAC_w32 : VOP3PWMMA_Profile<[v8i32, i32, v2i32, v8i32], 1, 16, 1, 0>; // 8xi4, 16xi4
def I32_IU4X64_SWMMAC_w32 : VOP3PWMMA_Profile<[v8i32, v2i32, v4i32, v8i32], 1, 0, 1, 0>; // 16xi4, 32xi4 **
def F32_FP8BF8_SWMMAC_w32 : VOP3PWMMA_Profile<[v8f32, v2i32, v4i32, v8f32], 1, 16, 0, 1>; // 8xf8, 16xf8
def F32_F16_SWMMAC_w64 : VOP3PWMMA_Profile<[v4f32, v4f16, v8f16, v4f32], 1, 8, 0, 0>;
def F32_BF16_SWMMAC_w64 : VOP3PWMMA_Profile<[v4f32, v4i16, v8i16, v4f32], 1, 8, 0, 0>;
def F16_F16_SWMMAC_w64 : VOP3PWMMA_Profile<[v4f16, v4f16, v8f16, v4f16], 1, 8, 0, 0>;
def BF16_BF16_SWMMAC_w64 : VOP3PWMMA_Profile<[v4i16, v4i16, v8i16, v4i16], 1, 8, 0, 0>;
def I32_IU8_SWMMAC_w64 : VOP3PWMMA_Profile<[v4i32, i32, v2i32, v4i32], 1, 8, 1, 0>; // 4xi8, 8xi8
def I32_IU4X32_SWMMAC_w64 : VOP3PWMMA_Profile<[v4i32, i32, i32, v4i32], 1, 16, 1, 0>; // 8xi4, 8xi4 ***
def I32_IU4X64_SWMMAC_w64 : VOP3PWMMA_Profile<[v4i32, i32, v2i32, v4i32], 1, 16, 1, 0>; // 8xi4, 16xi4
def F32_FP8BF8_SWMMAC_w64 : VOP3PWMMA_Profile<[v4f32, i32, v2i32, v4f32], 1, 8, 0, 1>; // 4xf8, 8xf8
// * IU4X16_WMMA_w64 lanes 0-31 will have 8xi4, remaining lanes are ignored
// ** IU4X64_SWMMAC_w32 index is i32, index_key is not used
// *** IU4X32_SWMMAC_w64 lanes 0-31 will have 8xi4 remaining lanes are ignored
// for matrix A, index is i16; Matrix B uses all lanes
let WaveSizePredicate = isWave32 in {
defm V_WMMA_F32_16X16X16_F16_w32 : WMMAInstGFX12<"v_wmma_f32_16x16x16_f16", F32_F16_WMMA_w32, "_w32">;
defm V_WMMA_F32_16X16X16_BF16_w32 : WMMAInstGFX12<"v_wmma_f32_16x16x16_bf16", F32_BF16_WMMA_w32, "_w32">;
defm V_WMMA_F16_16X16X16_F16_w32 : WMMAInstGFX12<"v_wmma_f16_16x16x16_f16", F16_F16_WMMA_w32, "_w32">;
defm V_WMMA_BF16_16X16X16_BF16_w32 : WMMAInstGFX12<"v_wmma_bf16_16x16x16_bf16", BF16_BF16_WMMA_w32, "_w32">;
defm V_WMMA_I32_16X16X16_IU8_w32 : WMMAInstGFX12<"v_wmma_i32_16x16x16_iu8", I32_IU8_WMMA_w32, "_w32">;
defm V_WMMA_I32_16X16X16_IU4_w32 : WMMAInstGFX12<"v_wmma_i32_16x16x16_iu4", I32_IU4X16_WMMA_w32, "_w32">;
defm V_WMMA_F32_16X16X16_FP8_FP8_w32 : WMMAInstGFX12<"v_wmma_f32_16x16x16_fp8_fp8", F32_FP8BF8_WMMA_w32, "_w32">;
defm V_WMMA_F32_16X16X16_FP8_BF8_w32 : WMMAInstGFX12<"v_wmma_f32_16x16x16_fp8_bf8", F32_FP8BF8_WMMA_w32, "_w32">;
defm V_WMMA_F32_16X16X16_BF8_FP8_w32 : WMMAInstGFX12<"v_wmma_f32_16x16x16_bf8_fp8", F32_FP8BF8_WMMA_w32, "_w32">;
defm V_WMMA_F32_16X16X16_BF8_BF8_w32 : WMMAInstGFX12<"v_wmma_f32_16x16x16_bf8_bf8", F32_FP8BF8_WMMA_w32, "_w32">;
defm V_WMMA_I32_16X16X32_IU4_w32 : WMMAInstGFX12<"v_wmma_i32_16x16x32_iu4", I32_IU4X32_WMMA_w32, "_w32">;
defm V_SWMMAC_F32_16X16X32_F16_w32 : SWMMACInstGFX12<"v_swmmac_f32_16x16x32_f16", F32_F16_SWMMAC_w32, "_w32">;
defm V_SWMMAC_F32_16X16X32_BF16_w32 : SWMMACInstGFX12<"v_swmmac_f32_16x16x32_bf16", F32_BF16_SWMMAC_w32, "_w32">;
defm V_SWMMAC_F16_16X16X32_F16_w32 : SWMMACInstGFX12<"v_swmmac_f16_16x16x32_f16", F16_F16_SWMMAC_w32, "_w32">;
defm V_SWMMAC_BF16_16X16X32_BF16_w32 : SWMMACInstGFX12<"v_swmmac_bf16_16x16x32_bf16", BF16_BF16_SWMMAC_w32, "_w32">;
defm V_SWMMAC_I32_16X16X32_IU8_w32 : SWMMACInstGFX12<"v_swmmac_i32_16x16x32_iu8", I32_IU8_SWMMAC_w32, "_w32">;
defm V_SWMMAC_I32_16X16X32_IU4_w32 : SWMMACInstGFX12<"v_swmmac_i32_16x16x32_iu4", I32_IU4X32_SWMMAC_w32, "_w32">;
defm V_SWMMAC_I32_16X16X64_IU4_w32 : SWMMACInstGFX12<"v_swmmac_i32_16x16x64_iu4", I32_IU4X64_SWMMAC_w32, "_w32">;
defm V_SWMMAC_F32_16X16X32_FP8_FP8_w32 : SWMMACInstGFX12<"v_swmmac_f32_16x16x32_fp8_fp8", F32_FP8BF8_SWMMAC_w32, "_w32">;
defm V_SWMMAC_F32_16X16X32_FP8_BF8_w32 : SWMMACInstGFX12<"v_swmmac_f32_16x16x32_fp8_bf8", F32_FP8BF8_SWMMAC_w32, "_w32">;
defm V_SWMMAC_F32_16X16X32_BF8_FP8_w32 : SWMMACInstGFX12<"v_swmmac_f32_16x16x32_bf8_fp8", F32_FP8BF8_SWMMAC_w32, "_w32">;
defm V_SWMMAC_F32_16X16X32_BF8_BF8_w32 : SWMMACInstGFX12<"v_swmmac_f32_16x16x32_bf8_bf8", F32_FP8BF8_SWMMAC_w32, "_w32">;
}
let WaveSizePredicate = isWave64 in {
defm V_WMMA_F32_16X16X16_F16_w64 : WMMAInstGFX12<"v_wmma_f32_16x16x16_f16", F32_F16_WMMA_w64, "_w64">;
defm V_WMMA_F32_16X16X16_BF16_w64 : WMMAInstGFX12<"v_wmma_f32_16x16x16_bf16", F32_BF16_WMMA_w64, "_w64">;
defm V_WMMA_F16_16X16X16_F16_w64 : WMMAInstGFX12<"v_wmma_f16_16x16x16_f16", F16_F16_WMMA_w64, "_w64">;
defm V_WMMA_BF16_16X16X16_BF16_w64 : WMMAInstGFX12<"v_wmma_bf16_16x16x16_bf16", BF16_BF16_WMMA_w64, "_w64">;
defm V_WMMA_I32_16X16X16_IU8_w64 : WMMAInstGFX12<"v_wmma_i32_16x16x16_iu8", I32_IU8_WMMA_w64, "_w64">;
defm V_WMMA_I32_16X16X16_IU4_w64 : WMMAInstGFX12<"v_wmma_i32_16x16x16_iu4", I32_IU4X16_WMMA_w64, "_w64">;
defm V_WMMA_F32_16X16X16_FP8_FP8_w64 : WMMAInstGFX12<"v_wmma_f32_16x16x16_fp8_fp8", F32_FP8BF8_WMMA_w64, "_w64">;
defm V_WMMA_F32_16X16X16_FP8_BF8_w64 : WMMAInstGFX12<"v_wmma_f32_16x16x16_fp8_bf8", F32_FP8BF8_WMMA_w64, "_w64">;
defm V_WMMA_F32_16X16X16_BF8_FP8_w64 : WMMAInstGFX12<"v_wmma_f32_16x16x16_bf8_fp8", F32_FP8BF8_WMMA_w64, "_w64">;
defm V_WMMA_F32_16X16X16_BF8_BF8_w64 : WMMAInstGFX12<"v_wmma_f32_16x16x16_bf8_bf8", F32_FP8BF8_WMMA_w64, "_w64">;
defm V_WMMA_I32_16X16X32_IU4_w64 : WMMAInstGFX12<"v_wmma_i32_16x16x32_iu4", I32_IU4X32_WMMA_w64, "_w64">;
defm V_SWMMAC_F32_16X16X32_F16_w64 : SWMMACInstGFX12<"v_swmmac_f32_16x16x32_f16", F32_F16_SWMMAC_w64, "_w64">;
defm V_SWMMAC_F32_16X16X32_BF16_w64 : SWMMACInstGFX12<"v_swmmac_f32_16x16x32_bf16", F32_BF16_SWMMAC_w64, "_w64">;
defm V_SWMMAC_F16_16X16X32_F16_w64 : SWMMACInstGFX12<"v_swmmac_f16_16x16x32_f16", F16_F16_SWMMAC_w64, "_w64">;
defm V_SWMMAC_BF16_16X16X32_BF16_w64 : SWMMACInstGFX12<"v_swmmac_bf16_16x16x32_bf16", BF16_BF16_SWMMAC_w64, "_w64">;
defm V_SWMMAC_I32_16X16X32_IU8_w64 : SWMMACInstGFX12<"v_swmmac_i32_16x16x32_iu8", I32_IU8_SWMMAC_w64, "_w64">;
defm V_SWMMAC_I32_16X16X32_IU4_w64 : SWMMACInstGFX12<"v_swmmac_i32_16x16x32_iu4", I32_IU4X32_SWMMAC_w64, "_w64">;
defm V_SWMMAC_I32_16X16X64_IU4_w64 : SWMMACInstGFX12<"v_swmmac_i32_16x16x64_iu4", I32_IU4X64_SWMMAC_w64, "_w64">;
defm V_SWMMAC_F32_16X16X32_FP8_FP8_w64 : SWMMACInstGFX12<"v_swmmac_f32_16x16x32_fp8_fp8", F32_FP8BF8_SWMMAC_w64, "_w64">;
defm V_SWMMAC_F32_16X16X32_FP8_BF8_w64 : SWMMACInstGFX12<"v_swmmac_f32_16x16x32_fp8_bf8", F32_FP8BF8_SWMMAC_w64, "_w64">;
defm V_SWMMAC_F32_16X16X32_BF8_FP8_w64 : SWMMACInstGFX12<"v_swmmac_f32_16x16x32_bf8_fp8", F32_FP8BF8_SWMMAC_w64, "_w64">;
defm V_SWMMAC_F32_16X16X32_BF8_BF8_w64 : SWMMACInstGFX12<"v_swmmac_f32_16x16x32_bf8_bf8", F32_FP8BF8_SWMMAC_w64, "_w64">;
}
// IsGFX11OpselIntrinsic: f16_f16 and bf16_bf16 Intrinsics have imm operand that
// controls opsel. Used by gfx11, removed in gfx12 (operand must be 0).
multiclass WMMAPat<string Inst, SDPatternOperator node, VOP3PWMMA_Profile P, bit IsGFX11OpselIntrinsic = 0> {
def : GCNPat <(P.DstVT !setdagop(!con(P.WmmaInPat, !if(IsGFX11OpselIntrinsic, (ins 0), (ins))), node)),
(P.DstVT !setdagop(P.WmmaOutPat, !cast<Instruction>(Inst#"_twoaddr")))>;
let AddedComplexity = 4 in
def : GCNPat <(P.DstVT !setdagop(!con(P.WmmaInlineInPat, !if(IsGFX11OpselIntrinsic, (ins 0), (ins))), node)),
(P.DstVT !setdagop(P.WmmaInlineOutPat, !cast<Instruction>(Inst#"_threeaddr")))>;
}
class SWMMACPat<Instruction Inst, SDPatternOperator node, VOP3PWMMA_Profile P> :
GCNPat <(P.DstVT !setdagop(P.SwmmacInPat, node)),
(P.DstVT !setdagop(P.SwmmacOutPat, Inst))>;
class SWMMACPat_w64<Instruction Inst, SDPatternOperator node, VOP3PWMMA_Profile P> :
GCNPat <(P.DstVT !setdagop(P.SwmmacInPat, node)),
(P.DstVT !setdagop(P.SwmmacOutPat, Inst))>{
let WaveSizePredicate = isWave64;
}
let WaveSizePredicate = isWave32, SubtargetPredicate = isGFX12Plus in {
defm : WMMAPat<"V_WMMA_F32_16X16X16_F16_w32", int_amdgcn_wmma_f32_16x16x16_f16, F32_F16_WMMA_w32>;
defm : WMMAPat<"V_WMMA_F32_16X16X16_BF16_w32", int_amdgcn_wmma_f32_16x16x16_bf16, F32_BF16_WMMA_w32>;
defm : WMMAPat<"V_WMMA_F16_16X16X16_F16_w32", int_amdgcn_wmma_f16_16x16x16_f16, F16_F16_WMMA_w32,1>;
defm : WMMAPat<"V_WMMA_BF16_16X16X16_BF16_w32", int_amdgcn_wmma_bf16_16x16x16_bf16, BF16_BF16_WMMA_w32,1>;
defm : WMMAPat<"V_WMMA_I32_16X16X16_IU8_w32", int_amdgcn_wmma_i32_16x16x16_iu8, I32_IU8_WMMA_w32>;
defm : WMMAPat<"V_WMMA_I32_16X16X16_IU4_w32", int_amdgcn_wmma_i32_16x16x16_iu4, I32_IU4X16_WMMA_w32>;
defm : WMMAPat<"V_WMMA_F32_16X16X16_FP8_FP8_w32", int_amdgcn_wmma_f32_16x16x16_fp8_fp8, F32_FP8BF8_WMMA_w32>;
defm : WMMAPat<"V_WMMA_F32_16X16X16_FP8_BF8_w32", int_amdgcn_wmma_f32_16x16x16_fp8_bf8, F32_FP8BF8_WMMA_w32>;
defm : WMMAPat<"V_WMMA_F32_16X16X16_BF8_FP8_w32", int_amdgcn_wmma_f32_16x16x16_bf8_fp8, F32_FP8BF8_WMMA_w32>;
defm : WMMAPat<"V_WMMA_F32_16X16X16_BF8_BF8_w32", int_amdgcn_wmma_f32_16x16x16_bf8_bf8, F32_FP8BF8_WMMA_w32>;
defm : WMMAPat<"V_WMMA_I32_16X16X32_IU4_w32", int_amdgcn_wmma_i32_16x16x32_iu4, I32_IU4X32_WMMA_w32>;
def : SWMMACPat<V_SWMMAC_F32_16X16X32_F16_w32_twoaddr, int_amdgcn_swmmac_f32_16x16x32_f16, F32_F16_SWMMAC_w32>;
def : SWMMACPat<V_SWMMAC_F32_16X16X32_BF16_w32_twoaddr, int_amdgcn_swmmac_f32_16x16x32_bf16, F32_BF16_SWMMAC_w32>;
def : SWMMACPat<V_SWMMAC_F16_16X16X32_F16_w32_twoaddr, int_amdgcn_swmmac_f16_16x16x32_f16, F16_F16_SWMMAC_w32>;
def : SWMMACPat<V_SWMMAC_BF16_16X16X32_BF16_w32_twoaddr, int_amdgcn_swmmac_bf16_16x16x32_bf16, BF16_BF16_SWMMAC_w32>;
def : SWMMACPat<V_SWMMAC_I32_16X16X32_IU8_w32_twoaddr, int_amdgcn_swmmac_i32_16x16x32_iu8, I32_IU8_SWMMAC_w32>;
def : SWMMACPat<V_SWMMAC_I32_16X16X32_IU4_w32_twoaddr, int_amdgcn_swmmac_i32_16x16x32_iu4, I32_IU4X32_SWMMAC_w32>;
def : GCNPat <(I32_IU4X64_SWMMAC_w32.DstVT !setdagop(I32_IU4X64_SWMMAC_w32.SwmmacInPat, int_amdgcn_swmmac_i32_16x16x64_iu4)),
(I32_IU4X64_SWMMAC_w32.DstVT !setdagop(I32_IU4X64_SWMMAC_w32.SwmmacOutPat, V_SWMMAC_I32_16X16X64_IU4_w32_twoaddr))>;
def : SWMMACPat<V_SWMMAC_F32_16X16X32_FP8_FP8_w32_twoaddr, int_amdgcn_swmmac_f32_16x16x32_fp8_fp8, F32_FP8BF8_SWMMAC_w32>;
def : SWMMACPat<V_SWMMAC_F32_16X16X32_FP8_BF8_w32_twoaddr, int_amdgcn_swmmac_f32_16x16x32_fp8_bf8, F32_FP8BF8_SWMMAC_w32>;
def : SWMMACPat<V_SWMMAC_F32_16X16X32_BF8_FP8_w32_twoaddr, int_amdgcn_swmmac_f32_16x16x32_bf8_fp8, F32_FP8BF8_SWMMAC_w32>;
def : SWMMACPat<V_SWMMAC_F32_16X16X32_BF8_BF8_w32_twoaddr, int_amdgcn_swmmac_f32_16x16x32_bf8_bf8, F32_FP8BF8_SWMMAC_w32>;
}
let WaveSizePredicate = isWave64, SubtargetPredicate = isGFX12Plus in {
defm : WMMAPat<"V_WMMA_F32_16X16X16_F16_w64", int_amdgcn_wmma_f32_16x16x16_f16, F32_F16_WMMA_w64>;
defm : WMMAPat<"V_WMMA_F32_16X16X16_BF16_w64", int_amdgcn_wmma_f32_16x16x16_bf16, F32_BF16_WMMA_w64>;
defm : WMMAPat<"V_WMMA_F16_16X16X16_F16_w64", int_amdgcn_wmma_f16_16x16x16_f16, F16_F16_WMMA_w64,1>;
defm : WMMAPat<"V_WMMA_BF16_16X16X16_BF16_w64", int_amdgcn_wmma_bf16_16x16x16_bf16, BF16_BF16_WMMA_w64,1>;
defm : WMMAPat<"V_WMMA_I32_16X16X16_IU8_w64", int_amdgcn_wmma_i32_16x16x16_iu8, I32_IU8_WMMA_w64>;
defm : WMMAPat<"V_WMMA_I32_16X16X16_IU4_w64", int_amdgcn_wmma_i32_16x16x16_iu4, I32_IU4X16_WMMA_w64>;
defm : WMMAPat<"V_WMMA_F32_16X16X16_FP8_FP8_w64", int_amdgcn_wmma_f32_16x16x16_fp8_fp8, F32_FP8BF8_WMMA_w64>;
defm : WMMAPat<"V_WMMA_F32_16X16X16_FP8_BF8_w64", int_amdgcn_wmma_f32_16x16x16_fp8_bf8, F32_FP8BF8_WMMA_w64>;
defm : WMMAPat<"V_WMMA_F32_16X16X16_BF8_FP8_w64", int_amdgcn_wmma_f32_16x16x16_bf8_fp8, F32_FP8BF8_WMMA_w64>;
defm : WMMAPat<"V_WMMA_F32_16X16X16_BF8_BF8_w64", int_amdgcn_wmma_f32_16x16x16_bf8_bf8, F32_FP8BF8_WMMA_w64>;
defm : WMMAPat<"V_WMMA_I32_16X16X32_IU4_w64", int_amdgcn_wmma_i32_16x16x32_iu4, I32_IU4X32_WMMA_w64>;
def : SWMMACPat<V_SWMMAC_F32_16X16X32_F16_w64_twoaddr, int_amdgcn_swmmac_f32_16x16x32_f16, F32_F16_SWMMAC_w64>;
def : SWMMACPat<V_SWMMAC_F32_16X16X32_BF16_w64_twoaddr, int_amdgcn_swmmac_f32_16x16x32_bf16, F32_BF16_SWMMAC_w64>;
def : SWMMACPat<V_SWMMAC_F16_16X16X32_F16_w64_twoaddr, int_amdgcn_swmmac_f16_16x16x32_f16, F16_F16_SWMMAC_w64>;
def : SWMMACPat<V_SWMMAC_BF16_16X16X32_BF16_w64_twoaddr, int_amdgcn_swmmac_bf16_16x16x32_bf16, BF16_BF16_SWMMAC_w64>;
def : SWMMACPat<V_SWMMAC_I32_16X16X32_IU8_w64_twoaddr, int_amdgcn_swmmac_i32_16x16x32_iu8, I32_IU8_SWMMAC_w64>;
def : SWMMACPat<V_SWMMAC_I32_16X16X32_IU4_w64_twoaddr, int_amdgcn_swmmac_i32_16x16x32_iu4, I32_IU4X32_SWMMAC_w64>;
def : SWMMACPat<V_SWMMAC_I32_16X16X64_IU4_w64_twoaddr, int_amdgcn_swmmac_i32_16x16x64_iu4, I32_IU4X64_SWMMAC_w64>;
def : SWMMACPat<V_SWMMAC_F32_16X16X32_FP8_FP8_w64_twoaddr, int_amdgcn_swmmac_f32_16x16x32_fp8_fp8, F32_FP8BF8_SWMMAC_w64>;
def : SWMMACPat<V_SWMMAC_F32_16X16X32_FP8_BF8_w64_twoaddr, int_amdgcn_swmmac_f32_16x16x32_fp8_bf8, F32_FP8BF8_SWMMAC_w64>;
def : SWMMACPat<V_SWMMAC_F32_16X16X32_BF8_FP8_w64_twoaddr, int_amdgcn_swmmac_f32_16x16x32_bf8_fp8, F32_FP8BF8_SWMMAC_w64>;
def : SWMMACPat<V_SWMMAC_F32_16X16X32_BF8_BF8_w64_twoaddr, int_amdgcn_swmmac_f32_16x16x32_bf8_bf8, F32_FP8BF8_SWMMAC_w64>;
}
//===----------------------------------------------------------------------===//
// Begin Real Encodings
//===----------------------------------------------------------------------===//
class VOP3P_DPP16<bits<7> op, VOP_DPP_Pseudo ps, int subtarget,
string opName = ps.OpName>
: VOP3P_DPP<op, opName, ps.Pfl, 1>, SIMCInstr<ps.PseudoInstr, subtarget> {
let hasSideEffects = ps.hasSideEffects;
let Defs = ps.Defs;
let SchedRW = ps.SchedRW;
let Uses = ps.Uses;
let AssemblerPredicate = HasDPP16;
let SubtargetPredicate = ps.SubtargetPredicate;
let OtherPredicates = ps.OtherPredicates;
let IsPacked = ps.IsPacked;
}
class VOP3P_DPP8_Base<bits<7> op, VOP_Pseudo ps, string opName = ps.OpName>
: VOP3P_DPP8<op, opName, ps.Pfl> {
let hasSideEffects = ps.hasSideEffects;
let Defs = ps.Defs;
let SchedRW = ps.SchedRW;
let Uses = ps.Uses;
let SubtargetPredicate = ps.SubtargetPredicate;
let OtherPredicates = ps.OtherPredicates;
let IsPacked = ps.IsPacked;
}
//===----------------------------------------------------------------------===//
// GFX11, GFX12
//===----------------------------------------------------------------------===//
multiclass VOP3P_Real_Base<GFXGen Gen, bits<7> op, string backing_ps_name = NAME,
string asmName = !cast<VOP3P_Pseudo>(NAME).Mnemonic> {
def Gen.Suffix :
VOP3P_Real_Gen<!cast<VOP3P_Pseudo>(backing_ps_name), Gen, asmName>,
VOP3Pe_gfx11_gfx12<op, !cast<VOP3P_Pseudo>(backing_ps_name).Pfl>;
}
class VOP3PeWmma<bits<7> op, VOPProfile P, VOP3PWMMA_Profile WMMAP>
: VOP3Pe_gfx11_gfx12<op, P>{
// opsel
let Inst{11} = !cond(!eq(WMMAP.IndexType, 0) : 0,
!eq(WMMAP.IndexType, 8) : index_key_8bit{0},
!eq(WMMAP.IndexType, 16) : index_key_16bit{0});
let Inst{12} = !if(!eq(WMMAP.IndexType, 8), index_key_8bit{1}, 0);
let Inst{13} = 0;
// opsel_hi
let Inst{59} = 1;
let Inst{60} = 1;
let Inst{14} = 1;
// neg_lo
let Inst{61} = !if(WMMAP.NegLo01, src0_modifiers{0}, 0);
let Inst{62} = !if(WMMAP.NegLo01, src1_modifiers{0}, 0);
let Inst{63} = !if(WMMAP.NegLo2, src2_modifiers{0}, 0);
// neg_hi
let Inst{8} = !if(WMMAP.NegHi01, src0_modifiers{1}, 0);
let Inst{9} = !if(WMMAP.NegHi01, src1_modifiers{1}, 0);
let Inst{10} = !if(WMMAP.NegHi2, src2_modifiers{1}, 0);
// clamp
let Inst{15} = !if(WMMAP.IsIU, clamp{0}, 0);
}
multiclass VOP3P_WMMA_Real_Base<GFXGen Gen, bits<7> op, VOP3PWMMA_Profile WMMAP,
string backing_ps_name = NAME,
string asmName = !cast<VOP3P_Pseudo>(NAME).Mnemonic> {
def Gen.Suffix :
VOP3P_Real_Gen<!cast<VOP3P_Pseudo>(backing_ps_name), Gen, asmName>,
VOP3PeWmma<op, !cast<VOP3P_Pseudo>(backing_ps_name).Pfl, WMMAP>;
}
multiclass VOP3P_Real_WMMA_gfx12 <bits<7> op, VOP3PWMMA_Profile WMMAP> {
let WaveSizePredicate = isWave32, DecoderNamespace = "GFX12" in {
defm _twoaddr : VOP3P_WMMA_Real_Base <GFX12Gen, op, WMMAP>;
}
}
multiclass VOP3P_Real_WMMA_gfx12w64 <bits<7> op, VOP3PWMMA_Profile WMMAP> {
let WaveSizePredicate = isWave64, DecoderNamespace = "GFX12W64" in {
defm _twoaddr : VOP3P_WMMA_Real_Base <GFX12Gen, op, WMMAP>;
}
}
defm V_WMMA_F32_16X16X16_F16_w32 : VOP3P_Real_WMMA_gfx12 <0x040, F32_F16_WMMA_w32>;
defm V_WMMA_F32_16X16X16_BF16_w32 : VOP3P_Real_WMMA_gfx12 <0x041, F32_BF16_WMMA_w32>;
defm V_WMMA_F16_16X16X16_F16_w32 : VOP3P_Real_WMMA_gfx12 <0x042, F16_F16_WMMA_w32>;
defm V_WMMA_BF16_16X16X16_BF16_w32 : VOP3P_Real_WMMA_gfx12 <0x043, BF16_BF16_WMMA_w32>;
defm V_WMMA_I32_16X16X16_IU8_w32 : VOP3P_Real_WMMA_gfx12 <0x044, I32_IU8_WMMA_w32>;
defm V_WMMA_I32_16X16X16_IU4_w32 : VOP3P_Real_WMMA_gfx12 <0x045, I32_IU4X16_WMMA_w32>;
defm V_WMMA_F32_16X16X16_FP8_FP8_w32 : VOP3P_Real_WMMA_gfx12 <0x046, F32_FP8BF8_WMMA_w32>;
defm V_WMMA_F32_16X16X16_FP8_BF8_w32 : VOP3P_Real_WMMA_gfx12 <0x047, F32_FP8BF8_WMMA_w32>;
defm V_WMMA_F32_16X16X16_BF8_FP8_w32 : VOP3P_Real_WMMA_gfx12 <0x048, F32_FP8BF8_WMMA_w32>;
defm V_WMMA_F32_16X16X16_BF8_BF8_w32 : VOP3P_Real_WMMA_gfx12 <0x049, F32_FP8BF8_WMMA_w32>;
defm V_WMMA_I32_16X16X32_IU4_w32 : VOP3P_Real_WMMA_gfx12 <0x04a, I32_IU4X32_WMMA_w32>;
defm V_WMMA_F32_16X16X16_F16_w64 : VOP3P_Real_WMMA_gfx12w64 <0x040, F32_F16_WMMA_w64>;
defm V_WMMA_F32_16X16X16_BF16_w64 : VOP3P_Real_WMMA_gfx12w64 <0x041, F32_BF16_WMMA_w64>;
defm V_WMMA_F16_16X16X16_F16_w64 : VOP3P_Real_WMMA_gfx12w64 <0x042, F16_F16_WMMA_w64>;
defm V_WMMA_BF16_16X16X16_BF16_w64 : VOP3P_Real_WMMA_gfx12w64 <0x043, BF16_BF16_WMMA_w64>;
defm V_WMMA_I32_16X16X16_IU8_w64 : VOP3P_Real_WMMA_gfx12w64 <0x044, I32_IU8_WMMA_w64>;
defm V_WMMA_I32_16X16X16_IU4_w64 : VOP3P_Real_WMMA_gfx12w64 <0x045, I32_IU4X16_WMMA_w64>;
defm V_WMMA_F32_16X16X16_FP8_FP8_w64 : VOP3P_Real_WMMA_gfx12w64 <0x046, F32_FP8BF8_WMMA_w64>;
defm V_WMMA_F32_16X16X16_FP8_BF8_w64 : VOP3P_Real_WMMA_gfx12w64 <0x047, F32_FP8BF8_WMMA_w64>;
defm V_WMMA_F32_16X16X16_BF8_FP8_w64 : VOP3P_Real_WMMA_gfx12w64 <0x048, F32_FP8BF8_WMMA_w64>;
defm V_WMMA_F32_16X16X16_BF8_BF8_w64 : VOP3P_Real_WMMA_gfx12w64 <0x049, F32_FP8BF8_WMMA_w64>;
defm V_WMMA_I32_16X16X32_IU4_w64 : VOP3P_Real_WMMA_gfx12w64 <0x04a, I32_IU4X32_WMMA_w64>;
defm V_SWMMAC_F32_16X16X32_F16_w32 : VOP3P_Real_WMMA_gfx12 <0x050, F32_F16_SWMMAC_w32>;
defm V_SWMMAC_F32_16X16X32_BF16_w32 : VOP3P_Real_WMMA_gfx12 <0x051, F32_BF16_SWMMAC_w32>;
defm V_SWMMAC_F16_16X16X32_F16_w32 : VOP3P_Real_WMMA_gfx12 <0x052, F16_F16_SWMMAC_w32>;
defm V_SWMMAC_BF16_16X16X32_BF16_w32 : VOP3P_Real_WMMA_gfx12 <0x053, BF16_BF16_SWMMAC_w32>;
defm V_SWMMAC_I32_16X16X32_IU8_w32 : VOP3P_Real_WMMA_gfx12 <0x054, I32_IU8_SWMMAC_w32>;
defm V_SWMMAC_I32_16X16X32_IU4_w32 : VOP3P_Real_WMMA_gfx12 <0x055, I32_IU4X32_SWMMAC_w32>;
defm V_SWMMAC_I32_16X16X64_IU4_w32 : VOP3P_Real_WMMA_gfx12 <0x056, I32_IU4X64_SWMMAC_w32>;
defm V_SWMMAC_F32_16X16X32_FP8_FP8_w32 : VOP3P_Real_WMMA_gfx12 <0x057, F32_FP8BF8_SWMMAC_w32>;
defm V_SWMMAC_F32_16X16X32_FP8_BF8_w32 : VOP3P_Real_WMMA_gfx12 <0x058, F32_FP8BF8_SWMMAC_w32>;
defm V_SWMMAC_F32_16X16X32_BF8_FP8_w32 : VOP3P_Real_WMMA_gfx12 <0x059, F32_FP8BF8_SWMMAC_w32>;
defm V_SWMMAC_F32_16X16X32_BF8_BF8_w32 : VOP3P_Real_WMMA_gfx12 <0x05a, F32_FP8BF8_SWMMAC_w32>;
defm V_SWMMAC_F32_16X16X32_F16_w64 : VOP3P_Real_WMMA_gfx12w64 <0x050, F32_F16_SWMMAC_w64>;
defm V_SWMMAC_F32_16X16X32_BF16_w64 : VOP3P_Real_WMMA_gfx12w64 <0x051, F32_BF16_SWMMAC_w64>;
defm V_SWMMAC_F16_16X16X32_F16_w64 : VOP3P_Real_WMMA_gfx12w64 <0x052, F16_F16_SWMMAC_w64>;
defm V_SWMMAC_BF16_16X16X32_BF16_w64 : VOP3P_Real_WMMA_gfx12w64 <0x053, BF16_BF16_SWMMAC_w64>;
defm V_SWMMAC_I32_16X16X32_IU8_w64 : VOP3P_Real_WMMA_gfx12w64 <0x054, I32_IU8_SWMMAC_w64>;
defm V_SWMMAC_I32_16X16X32_IU4_w64 : VOP3P_Real_WMMA_gfx12w64 <0x055, I32_IU4X32_SWMMAC_w64>;
defm V_SWMMAC_I32_16X16X64_IU4_w64 : VOP3P_Real_WMMA_gfx12w64 <0x056, I32_IU4X64_SWMMAC_w64>;
defm V_SWMMAC_F32_16X16X32_FP8_FP8_w64 : VOP3P_Real_WMMA_gfx12w64 <0x057, F32_FP8BF8_SWMMAC_w64>;
defm V_SWMMAC_F32_16X16X32_FP8_BF8_w64 : VOP3P_Real_WMMA_gfx12w64 <0x058, F32_FP8BF8_SWMMAC_w64>;
defm V_SWMMAC_F32_16X16X32_BF8_FP8_w64 : VOP3P_Real_WMMA_gfx12w64 <0x059, F32_FP8BF8_SWMMAC_w64>;
defm V_SWMMAC_F32_16X16X32_BF8_BF8_w64 : VOP3P_Real_WMMA_gfx12w64 <0x05a, F32_FP8BF8_SWMMAC_w64>;
multiclass VOP3P_Real_with_name<GFXGen Gen, bits<7> op,
string backing_ps_name = NAME,
string asmName = !cast<VOP3P_Pseudo>(NAME).Mnemonic> {
defvar ps = !cast<VOP3P_Pseudo>(backing_ps_name);
let AsmString = asmName # ps.AsmOperands in
def Gen.Suffix :
VOP3P_Real_Gen<!cast<VOP3P_Pseudo>(backing_ps_name), Gen, asmName>,
VOP3Pe_gfx11_gfx12<op, !cast<VOP3P_Pseudo>(backing_ps_name).Pfl>;
def : AMDGPUMnemonicAlias<ps.Mnemonic, asmName> {
let AssemblerPredicate = Gen.AssemblerPredicate;
}
}
multiclass VOP3P_Real_dpp<GFXGen Gen, bits<7> op, string backing_ps_name = NAME,
string asmName = !cast<VOP3P_Pseudo>(NAME).Mnemonic> {
defvar ps = !cast<VOP3P_Pseudo>(backing_ps_name);
def _dpp#Gen.Suffix
: VOP3P_DPP16<op, !cast<VOP_DPP_Pseudo>(backing_ps_name #"_dpp"),
Gen.Subtarget> {
let AsmString = asmName #ps.Pfl.AsmVOP3DPP16;
let DecoderNamespace = Gen.DecoderNamespace;
let AssemblerPredicate = Gen.AssemblerPredicate;
}
}
multiclass VOP3P_Real_dpp8<GFXGen Gen, bits<7> op, string backing_ps_name = NAME,
string asmName = !cast<VOP3P_Pseudo>(NAME).Mnemonic> {
defvar ps = !cast<VOP3P_Pseudo>(backing_ps_name);
def _dpp8#Gen.Suffix : VOP3P_DPP8_Base<op, ps> {
let AsmString = asmName #ps.Pfl.AsmVOP3DPP8;
let DecoderNamespace = Gen.DecoderNamespace;
let AssemblerPredicate = Gen.AssemblerPredicate;
}
}
multiclass VOP3P_Realtriple<GFXGen Gen, bits<7> op, string backing_ps_name = NAME,
string asmName = !cast<VOP3P_Pseudo>(NAME).Mnemonic>
: VOP3P_Real_Base<Gen, op, backing_ps_name, asmName>,
VOP3P_Real_dpp<Gen, op, backing_ps_name, asmName>,
VOP3P_Real_dpp8<Gen, op, backing_ps_name, asmName>;
//===----------------------------------------------------------------------===//
// GFX12
//===----------------------------------------------------------------------===//
multiclass VOP3P_Real_gfx12<bits<7> op> : VOP3P_Real_Base<GFX12Gen, op>;
multiclass VOP3P_Real_with_name_gfx12<bits<7> op,
string backing_ps_name = NAME,
string asmName = !cast<VOP3P_Pseudo>(NAME).Mnemonic> :
VOP3P_Real_with_name<GFX12Gen, op, backing_ps_name, asmName>;
defm V_PK_MIN_NUM_F16 : VOP3P_Real_with_name_gfx12<0x1b, "V_PK_MIN_F16", "v_pk_min_num_f16">;
defm V_PK_MAX_NUM_F16 : VOP3P_Real_with_name_gfx12<0x1c, "V_PK_MAX_F16", "v_pk_max_num_f16">;
defm V_PK_MINIMUM_F16 : VOP3P_Real_gfx12<0x1d>;
defm V_PK_MAXIMUM_F16 : VOP3P_Real_gfx12<0x1e>;
defm V_DOT4_F32_FP8_BF8 : VOP3P_Realtriple<GFX12Gen, 0x24>;
defm V_DOT4_F32_BF8_FP8 : VOP3P_Realtriple<GFX12Gen, 0x25>;
defm V_DOT4_F32_FP8_FP8 : VOP3P_Realtriple<GFX12Gen, 0x26>;
defm V_DOT4_F32_BF8_BF8 : VOP3P_Realtriple<GFX12Gen, 0x27>;
//===----------------------------------------------------------------------===//
// GFX11
//===----------------------------------------------------------------------===//
multiclass VOP3P_Real_gfx11_gfx12<bits<7> op> :
VOP3P_Real_Base<GFX11Gen, op>, VOP3P_Real_Base<GFX12Gen, op>;
defm V_DOT4_I32_IU8 : VOP3P_Real_gfx11_gfx12<0x16>;
defm V_DOT8_I32_IU4 : VOP3P_Real_gfx11_gfx12<0x18>;
defm V_DOT2_F32_BF16 : VOP3P_Real_gfx11_gfx12<0x1a>;
multiclass VOP3P_Real_WMMA <bits<7> op> {
let WaveSizePredicate = isWave32, DecoderNamespace = "GFX11" in {
defm _twoaddr_w32 : VOP3P_Real_Base <GFX11Gen, op>;
}
let WaveSizePredicate = isWave64, DecoderNamespace = "GFX11W64" in {
defm _twoaddr_w64 : VOP3P_Real_Base <GFX11Gen, op>;
}
}
defm V_WMMA_F32_16X16X16_F16 : VOP3P_Real_WMMA <0x040>;
defm V_WMMA_F32_16X16X16_BF16 : VOP3P_Real_WMMA <0x041>;
defm V_WMMA_F16_16X16X16_F16 : VOP3P_Real_WMMA <0x042>;
defm V_WMMA_BF16_16X16X16_BF16 : VOP3P_Real_WMMA <0x043>;
defm V_WMMA_I32_16X16X16_IU8 : VOP3P_Real_WMMA <0x044>;
defm V_WMMA_I32_16X16X16_IU4 : VOP3P_Real_WMMA <0x045>;
//===----------------------------------------------------------------------===//
// GFX8 (VI)
//===----------------------------------------------------------------------===//
multiclass VOP3P_Real_vi<bits<7> op> {
def _vi : VOP3P_Real<!cast<VOP3_Pseudo>(NAME), SIEncodingFamily.VI>,
VOP3Pe <op, !cast<VOP3_Pseudo>(NAME).Pfl> {
let AssemblerPredicate = HasVOP3PInsts;
let DecoderNamespace = "GFX8";
let VOP3P = 1;
}
}
multiclass VOP3P_Real_MAI<bits<7> op> {
def _vi : VOP3P_Real<!cast<VOP3_Pseudo>(NAME#"_e64"), SIEncodingFamily.VI>,
VOP3Pe_MAI <op, !cast<VOP3_Pseudo>(NAME#"_e64").Pfl, ?> {
let AssemblerPredicate = HasMAIInsts;
let DecoderNamespace = "GFX8";
let Inst{14} = ?; // op_sel_hi(2)
let Inst{59} = ?; // op_sel_hi(0)
let Inst{60} = ?; // op_sel_hi(1)
}
}
let Constraints = "" in {
multiclass VOP3P_Real_MFMA_gfx90a<bits<7> op> {
let SubtargetPredicate = isGFX90AOnly,
AssemblerPredicate = isGFX90AOnly, DecoderNamespace = "GFX90A" in {
def _gfx90a_acd : VOP3P_Real<!cast<VOP3_Pseudo>(NAME#"_e64"), SIEncodingFamily.GFX90A>,
VOP3Pe_MAI <op, !cast<VOP3_Pseudo>(NAME#"_e64").Pfl, 1>;
def _gfx90a_vcd : VOP3P_Real<!cast<VOP3_Pseudo>(NAME # "_vgprcd" # "_e64"), SIEncodingFamily.GFX90A>,
VOP3Pe_MAI <op, !cast<VOP3_Pseudo>(NAME # "_vgprcd" # "_e64").Pfl, 0>;
} // End AssemblerPredicate = isGFX90AOnly, DecoderNamespace = "GFX90A"
}
}
multiclass VOP3P_Real_MFMA_gfx940_aliases<string NameFrom, string NameTo, string Op,
VOP3_Pseudo PS_ACD = !cast<VOP3_Pseudo>(Op # "_e64"),
VOP3_Pseudo PS_VCD = !cast<VOP3_Pseudo>(Op # "_vgprcd" # "_e64"),
VOPProfile Pfl_ACD = PS_ACD.Pfl,
VOPProfile Pfl_VCD = PS_VCD.Pfl> {
if !ne(NameFrom, NameTo) then {
def : InstAlias <NameTo # " " # PS_ACD.AsmOperands,
(!cast<VOP3P_Real>(Op # "_gfx940_acd") Pfl_ACD.DstRC:$vdst,
Pfl_ACD.Src0RC64:$src0, Pfl_ACD.Src1RC64:$src1, Pfl_ACD.Src2RC64:$src2,
CBSZ:$cbsz, ABID:$abid, blgp:$blgp)>, PredicateControl;
def : InstAlias <NameTo # " " # PS_VCD.AsmOperands,
(!cast<VOP3P_Real>(Op # "_gfx940_vcd") Pfl_VCD.DstRC:$vdst,
Pfl_VCD.Src0RC64:$src0, Pfl_VCD.Src1RC64:$src1, Pfl_VCD.Src2RC64:$src2,
CBSZ:$cbsz, ABID:$abid, blgp:$blgp)>, PredicateControl;
}
}
multiclass VOP3P_Real_MFMA_gfx940<bits<7> op, string Name = !cast<VOP3_Pseudo>(NAME#"_e64").Mnemonic,
VOP3_Pseudo PS_ACD = !cast<VOP3_Pseudo>(NAME # "_e64"),
VOP3_Pseudo PS_VCD = !cast<VOP3_Pseudo>(NAME # "_vgprcd" # "_e64")> {
let AssemblerPredicate = isGFX940Plus,
DecoderNamespace = "GFX940",
AsmString = Name # PS_ACD.AsmOperands, Constraints = "" in {
def _gfx940_acd : VOP3P_Real<PS_ACD, SIEncodingFamily.GFX940>,
VOP3Pe_MAI <op, PS_ACD.Pfl, 1>;
def _gfx940_vcd : VOP3P_Real<PS_VCD, SIEncodingFamily.GFX940>,
VOP3Pe_MAI <op, PS_VCD.Pfl, 0>;
} // End AssemblerPredicate = isGFX940Plus, DecoderNamespace = "GFX940"
let SubtargetPredicate = isGFX940Plus in {
defm : VOP3P_Real_MFMA_gfx940_aliases<Name, PS_ACD.Mnemonic, NAME>;
if !ne(!subst("_1k", "", PS_ACD.Mnemonic), PS_ACD.Mnemonic) then
defm : VOP3P_Real_MFMA_gfx940_aliases<Name, !subst("_1k", "", PS_ACD.Mnemonic), NAME>;
}
}
multiclass VOP3P_Real_MFMA_vi<bits<7> op> {
def _vi : VOP3P_Real<!cast<VOP3_Pseudo>(NAME#"_e64"), SIEncodingFamily.VI>,
VOP3Pe_MAI <op, !cast<VOP3_Pseudo>(NAME#"_e64").Pfl, ?> {
let SubtargetPredicate = isGFX8GFX9NotGFX90A;
let AssemblerPredicate = HasMAIInsts;
let DecoderNamespace = "GFX8";
let Constraints = "";
}
}
multiclass VOP3P_Real_MFMA_vi_gfx90a<bits<7> op> :
VOP3P_Real_MFMA_gfx90a <op>,
VOP3P_Real_MFMA_vi <op>;
multiclass VOP3P_Real_MFMA<bits<7> op, string GFX940Name = !cast<VOP3_Pseudo>(NAME#"_e64").Mnemonic> :
VOP3P_Real_MFMA_vi_gfx90a <op>,
VOP3P_Real_MFMA_gfx940 <op, GFX940Name>;
multiclass VOP3P_Real_SMFMAC<bits<7> op, string alias> {
def _gfx940 : VOP3P_Real<!cast<VOP3_Pseudo>(NAME#"_e64"), SIEncodingFamily.VI>,
VOP3Pe_SMFMAC <op> {
let AssemblerPredicate = isGFX940Plus;
let DecoderNamespace = "GFX8";
}
def : AMDGPUMnemonicAlias<alias, !cast<VOP3_Pseudo>(NAME#"_e64").Mnemonic> {
let AssemblerPredicate = isGFX940Plus;
}
}
let SubtargetPredicate = isGFX8GFX9 in {
defm V_PK_MAD_I16 : VOP3P_Real_vi <0x00>;
defm V_PK_MUL_LO_U16 : VOP3P_Real_vi <0x01>;
defm V_PK_ADD_I16 : VOP3P_Real_vi <0x02>;
defm V_PK_SUB_I16 : VOP3P_Real_vi <0x03>;
defm V_PK_LSHLREV_B16 : VOP3P_Real_vi <0x04>;
defm V_PK_LSHRREV_B16 : VOP3P_Real_vi <0x05>;
defm V_PK_ASHRREV_I16 : VOP3P_Real_vi <0x06>;
defm V_PK_MAX_I16 : VOP3P_Real_vi <0x07>;
defm V_PK_MIN_I16 : VOP3P_Real_vi <0x08>;
defm V_PK_MAD_U16 : VOP3P_Real_vi <0x09>;
defm V_PK_ADD_U16 : VOP3P_Real_vi <0x0a>;
defm V_PK_SUB_U16 : VOP3P_Real_vi <0x0b>;
defm V_PK_MAX_U16 : VOP3P_Real_vi <0x0c>;
defm V_PK_MIN_U16 : VOP3P_Real_vi <0x0d>;
defm V_PK_FMA_F16 : VOP3P_Real_vi <0x0e>;
defm V_PK_ADD_F16 : VOP3P_Real_vi <0x0f>;
defm V_PK_MUL_F16 : VOP3P_Real_vi <0x10>;
defm V_PK_MIN_F16 : VOP3P_Real_vi <0x11>;
defm V_PK_MAX_F16 : VOP3P_Real_vi <0x12>;
let OtherPredicates = [HasMadMixInsts] in {
defm V_MAD_MIX_F32 : VOP3P_Real_vi <0x20>;
defm V_MAD_MIXLO_F16 : VOP3P_Real_vi <0x21>;
defm V_MAD_MIXHI_F16 : VOP3P_Real_vi <0x22>;
}
let OtherPredicates = [HasFmaMixInsts],
DecoderNamespace = "GFX9_DL" in {
// The mad_mix instructions were renamed and their behaviors changed,
// but the opcode stayed the same so we need to put these in a
// different DecoderNamespace to avoid the ambiguity.
defm V_FMA_MIX_F32 : VOP3P_Real_vi <0x20>;
defm V_FMA_MIXLO_F16 : VOP3P_Real_vi <0x21>;
defm V_FMA_MIXHI_F16 : VOP3P_Real_vi <0x22>;
}
defm V_DOT2_I32_I16 : VOP3P_Real_vi <0x26>;
defm V_DOT2_U32_U16 : VOP3P_Real_vi <0x27>;
defm V_DOT2_F32_F16 : VOP3P_Real_vi <0x23>;
defm V_DOT4_U32_U8 : VOP3P_Real_vi <0x29>;
defm V_DOT8_U32_U4 : VOP3P_Real_vi <0x2b>;
defm V_DOT4_I32_I8 : VOP3P_Real_vi <0x28>;
defm V_DOT8_I32_I4 : VOP3P_Real_vi <0x2a>;
} // End SubtargetPredicate = isGFX8GFX9
let OtherPredicates = [HasMAIInsts] in {
defm V_ACCVGPR_READ_B32 : VOP3P_Real_MAI <0x58>;
defm V_ACCVGPR_WRITE_B32 : VOP3P_Real_MAI <0x59>;
defm V_MFMA_F32_32X32X1F32 : VOP3P_Real_MFMA <0x40, "v_mfma_f32_32x32x1_2b_f32">;
defm V_MFMA_F32_16X16X1F32 : VOP3P_Real_MFMA <0x41, "v_mfma_f32_16x16x1_4b_f32">;
defm V_MFMA_F32_4X4X1F32 : VOP3P_Real_MFMA <0x42, "v_mfma_f32_4x4x1_16b_f32">;
defm V_MFMA_F32_32X32X2F32 : VOP3P_Real_MFMA <0x44, "v_mfma_f32_32x32x2_f32">;
defm V_MFMA_F32_16X16X4F32 : VOP3P_Real_MFMA <0x45, "v_mfma_f32_16x16x4_f32">;
defm V_MFMA_F32_32X32X4F16 : VOP3P_Real_MFMA <0x48, "v_mfma_f32_32x32x4_2b_f16">;
defm V_MFMA_F32_16X16X4F16 : VOP3P_Real_MFMA <0x49, "v_mfma_f32_16x16x4_4b_f16">;
defm V_MFMA_F32_4X4X4F16 : VOP3P_Real_MFMA <0x4a, "v_mfma_f32_4x4x4_16b_f16">;
defm V_MFMA_F32_32X32X8F16 : VOP3P_Real_MFMA <0x4c, "v_mfma_f32_32x32x8_f16">;
defm V_MFMA_F32_16X16X16F16 : VOP3P_Real_MFMA <0x4d, "v_mfma_f32_16x16x16_f16">;
defm V_MFMA_I32_32X32X4I8 : VOP3P_Real_MFMA <0x50, "v_mfma_i32_32x32x4_2b_i8">;
defm V_MFMA_I32_16X16X4I8 : VOP3P_Real_MFMA <0x51, "v_mfma_i32_16x16x4_4b_i8">;
defm V_MFMA_I32_4X4X4I8 : VOP3P_Real_MFMA <0x52, "v_mfma_i32_4x4x4_16b_i8">;
defm V_MFMA_I32_16X16X16I8 : VOP3P_Real_MFMA_vi_gfx90a <0x55>;
defm V_MFMA_I32_32X32X8I8 : VOP3P_Real_MFMA_vi_gfx90a <0x54>;
defm V_MFMA_F32_32X32X2BF16 : VOP3P_Real_MFMA_vi_gfx90a <0x68>;
defm V_MFMA_F32_16X16X2BF16 : VOP3P_Real_MFMA_vi_gfx90a <0x69>;
defm V_MFMA_F32_4X4X2BF16 : VOP3P_Real_MFMA_vi_gfx90a <0x6b>;
defm V_MFMA_F32_32X32X4BF16 : VOP3P_Real_MFMA_vi_gfx90a <0x6c>;
defm V_MFMA_F32_16X16X8BF16 : VOP3P_Real_MFMA_vi_gfx90a <0x6d>;
} // End OtherPredicates = [HasMAIInsts]
defm V_MFMA_F32_32X32X4BF16_1K : VOP3P_Real_MFMA_gfx90a <0x63>;
defm V_MFMA_F32_16X16X4BF16_1K : VOP3P_Real_MFMA_gfx90a <0x64>;
defm V_MFMA_F32_4X4X4BF16_1K : VOP3P_Real_MFMA_gfx90a <0x65>;
defm V_MFMA_F32_32X32X8BF16_1K : VOP3P_Real_MFMA_gfx90a <0x66>;
defm V_MFMA_F32_16X16X16BF16_1K : VOP3P_Real_MFMA_gfx90a <0x67>;
defm V_MFMA_F64_16X16X4F64 : VOP3P_Real_MFMA_gfx90a <0x6e>;
defm V_MFMA_F64_4X4X4F64 : VOP3P_Real_MFMA_gfx90a <0x6f>;
defm V_MFMA_I32_32X32X16I8 : VOP3P_Real_MFMA_gfx940 <0x56, "v_mfma_i32_32x32x16_i8">;
defm V_MFMA_I32_16X16X32I8 : VOP3P_Real_MFMA_gfx940 <0x57, "v_mfma_i32_16x16x32_i8">;
defm V_MFMA_F32_16X16X8XF32 : VOP3P_Real_MFMA_gfx940 <0x3e, "v_mfma_f32_16x16x8_xf32">;
defm V_MFMA_F32_32X32X4XF32 : VOP3P_Real_MFMA_gfx940 <0x3f, "v_mfma_f32_32x32x4_xf32">;
defm V_MFMA_F32_16X16X32_BF8_BF8 : VOP3P_Real_MFMA_gfx940 <0x70>;
defm V_MFMA_F32_16X16X32_BF8_FP8 : VOP3P_Real_MFMA_gfx940 <0x71>;
defm V_MFMA_F32_16X16X32_FP8_BF8 : VOP3P_Real_MFMA_gfx940 <0x72>;
defm V_MFMA_F32_16X16X32_FP8_FP8 : VOP3P_Real_MFMA_gfx940 <0x73>;
defm V_MFMA_F32_32X32X16_BF8_BF8 : VOP3P_Real_MFMA_gfx940 <0x74>;
defm V_MFMA_F32_32X32X16_BF8_FP8 : VOP3P_Real_MFMA_gfx940 <0x75>;
defm V_MFMA_F32_32X32X16_FP8_BF8 : VOP3P_Real_MFMA_gfx940 <0x76>;
defm V_MFMA_F32_32X32X16_FP8_FP8 : VOP3P_Real_MFMA_gfx940 <0x77>;
defm V_MFMA_F32_32X32X4BF16_1K : VOP3P_Real_MFMA_gfx940 <0x5d, "v_mfma_f32_32x32x4_2b_bf16">;
defm V_MFMA_F32_16X16X4BF16_1K : VOP3P_Real_MFMA_gfx940 <0x5e, "v_mfma_f32_16x16x4_4b_bf16">;
defm V_MFMA_F32_4X4X4BF16_1K : VOP3P_Real_MFMA_gfx940 <0x5f, "v_mfma_f32_4x4x4_16b_bf16">;
defm V_MFMA_F32_32X32X8BF16_1K : VOP3P_Real_MFMA_gfx940 <0x60, "v_mfma_f32_32x32x8_bf16">;
defm V_MFMA_F32_16X16X16BF16_1K : VOP3P_Real_MFMA_gfx940 <0x61, "v_mfma_f32_16x16x16_bf16">;
defm V_MFMA_F64_16X16X4F64 : VOP3P_Real_MFMA_gfx940 <0x6e, "v_mfma_f64_16x16x4_f64">;
defm V_MFMA_F64_4X4X4F64 : VOP3P_Real_MFMA_gfx940 <0x6f, "v_mfma_f64_4x4x4_4b_f64">;
defm V_SMFMAC_F32_16X16X32_F16 : VOP3P_Real_SMFMAC <0x62, "v_smfmac_f32_16x16x32f16">;
defm V_SMFMAC_F32_32X32X16_F16 : VOP3P_Real_SMFMAC <0x64, "v_smfmac_f32_32x32x16f16">;
defm V_SMFMAC_F32_16X16X32_BF16 : VOP3P_Real_SMFMAC <0x66, "v_smfmac_f32_16x16x32bf16">;
defm V_SMFMAC_F32_32X32X16_BF16 : VOP3P_Real_SMFMAC <0x68, "v_smfmac_f32_32x32x16bf16">;
defm V_SMFMAC_I32_16X16X64_I8 : VOP3P_Real_SMFMAC <0x6a, "v_smfmac_i32_16x16x64i8">;
defm V_SMFMAC_I32_32X32X32_I8 : VOP3P_Real_SMFMAC <0x6c, "v_smfmac_i32_32x32x32i8">;
defm V_SMFMAC_F32_16X16X64_BF8_BF8 : VOP3P_Real_SMFMAC <0x78, "v_smfmac_f32_16x16x64bf8bf8">;
defm V_SMFMAC_F32_16X16X64_BF8_FP8 : VOP3P_Real_SMFMAC <0x79, "v_smfmac_f32_16x16x64bf8fp8">;
defm V_SMFMAC_F32_16X16X64_FP8_BF8 : VOP3P_Real_SMFMAC <0x7a, "v_smfmac_f32_16x16x64fp8bf8">;
defm V_SMFMAC_F32_16X16X64_FP8_FP8 : VOP3P_Real_SMFMAC <0x7b, "v_smfmac_f32_16x16x64fp8fp8">;
defm V_SMFMAC_F32_32X32X32_BF8_BF8 : VOP3P_Real_SMFMAC <0x7c, "v_smfmac_f32_32x32x32bf8bf8">;
defm V_SMFMAC_F32_32X32X32_BF8_FP8 : VOP3P_Real_SMFMAC <0x7d, "v_smfmac_f32_32x32x32bf8fp8">;
defm V_SMFMAC_F32_32X32X32_FP8_BF8 : VOP3P_Real_SMFMAC <0x7e, "v_smfmac_f32_32x32x32fp8bf8">;
defm V_SMFMAC_F32_32X32X32_FP8_FP8 : VOP3P_Real_SMFMAC <0x7f, "v_smfmac_f32_32x32x32fp8fp8">;
defm V_PK_FMA_F32 : VOP3P_Real_vi <0x30>;
defm V_PK_MUL_F32 : VOP3P_Real_vi <0x31>;
defm V_PK_ADD_F32 : VOP3P_Real_vi <0x32>;
defm V_PK_MOV_B32 : VOP3P_Real_vi <0x33>;
//===----------------------------------------------------------------------===//
// GFX10.
//===----------------------------------------------------------------------===//
let AssemblerPredicate = isGFX10Only, DecoderNamespace = "GFX10", VOP3P = 1 in {
multiclass VOP3P_Real_gfx10<bits<7> op> {
def _gfx10 : VOP3P_Real<!cast<VOP3P_Pseudo>(NAME), SIEncodingFamily.GFX10>,
VOP3Pe_gfx10 <op, !cast<VOP3P_Pseudo>(NAME).Pfl>;
}
} // End AssemblerPredicate = isGFX10Only, DecoderNamespace = "GFX10", VOP3P = 1
multiclass VOP3P_Real_gfx10_gfx11<bits<7> op> :
VOP3P_Real_gfx10<op>, VOP3P_Real_Base<GFX11Gen, op>;
multiclass VOP3P_Real_gfx10_gfx11_gfx12<bits<7> op> :
VOP3P_Real_gfx10_gfx11<op>, VOP3P_Real_Base<GFX12Gen, op>;
multiclass VOP3P_Real_gfx10_gfx11_gfx12_Triple<bits<7> op> :
VOP3P_Real_gfx10<op>, VOP3P_Realtriple<GFX11Gen, op>,
VOP3P_Realtriple<GFX12Gen, op>;
defm V_PK_MAD_I16 : VOP3P_Real_gfx10_gfx11_gfx12<0x00>;
defm V_PK_MUL_LO_U16 : VOP3P_Real_gfx10_gfx11_gfx12<0x01>;
defm V_PK_ADD_I16 : VOP3P_Real_gfx10_gfx11_gfx12<0x02>;
defm V_PK_SUB_I16 : VOP3P_Real_gfx10_gfx11_gfx12<0x03>;
defm V_PK_LSHLREV_B16 : VOP3P_Real_gfx10_gfx11_gfx12<0x04>;
defm V_PK_LSHRREV_B16 : VOP3P_Real_gfx10_gfx11_gfx12<0x05>;
defm V_PK_ASHRREV_I16 : VOP3P_Real_gfx10_gfx11_gfx12<0x06>;
defm V_PK_MAX_I16 : VOP3P_Real_gfx10_gfx11_gfx12<0x07>;
defm V_PK_MIN_I16 : VOP3P_Real_gfx10_gfx11_gfx12<0x08>;
defm V_PK_MAD_U16 : VOP3P_Real_gfx10_gfx11_gfx12<0x09>;
defm V_PK_ADD_U16 : VOP3P_Real_gfx10_gfx11_gfx12<0x0a>;
defm V_PK_SUB_U16 : VOP3P_Real_gfx10_gfx11_gfx12<0x0b>;
defm V_PK_MAX_U16 : VOP3P_Real_gfx10_gfx11_gfx12<0x0c>;
defm V_PK_MIN_U16 : VOP3P_Real_gfx10_gfx11_gfx12<0x0d>;
defm V_PK_FMA_F16 : VOP3P_Real_gfx10_gfx11_gfx12<0x0e>;
defm V_PK_ADD_F16 : VOP3P_Real_gfx10_gfx11_gfx12<0x0f>;
defm V_PK_MUL_F16 : VOP3P_Real_gfx10_gfx11_gfx12<0x10>;
defm V_PK_MIN_F16 : VOP3P_Real_gfx10_gfx11<0x11>;
defm V_PK_MAX_F16 : VOP3P_Real_gfx10_gfx11<0x12>;
defm V_FMA_MIX_F32 : VOP3P_Real_gfx10_gfx11_gfx12_Triple<0x20>;
defm V_FMA_MIXLO_F16 : VOP3P_Real_gfx10_gfx11_gfx12_Triple<0x21>;
defm V_FMA_MIXHI_F16 : VOP3P_Real_gfx10_gfx11_gfx12_Triple<0x22>;
defm V_DOT2_I32_I16 : VOP3P_Real_gfx10 <0x14>;
defm V_DOT2_U32_U16 : VOP3P_Real_gfx10 <0x15>;
defm V_DOT2_F32_F16 : VOP3P_Real_gfx10_gfx11_gfx12_Triple<0x13>;
defm V_DOT4_U32_U8 : VOP3P_Real_gfx10_gfx11_gfx12<0x17>;
defm V_DOT8_U32_U4 : VOP3P_Real_gfx10_gfx11_gfx12<0x19>;
defm V_DOT4_I32_I8 : VOP3P_Real_gfx10 <0x16>;
defm V_DOT8_I32_I4 : VOP3P_Real_gfx10 <0x18>;